Space Physics and Aeronomy, Ionosphere Dynamics and Applications. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Space Physics and Aeronomy, Ionosphere Dynamics and Applications - Группа авторов страница 56

СКАЧАТЬ of soft electron precipitation, Zhang et al. (2016b) also reported ion upflow events in the polar cap patch due to enhanced frictional heating, that is, the type‐1 ion upflow defined in Wahlund et al. (1992), using DMSP satellite. In a subsequent study based on an extended DMSP database, Ma et al. (2018) found that the highest upflow occurrence rate was associated with hot patches, which are accompanied with particle precipitation, strong convection speed, and localized FACs.

      Cold plasma of ionosphere origin has indeed been observed at very high altitude. For instance, Foster et al. (2014) described in situ observations of locally enhanced cold plasma density at the ~5 Re altitude of the Van Allen Probes RBSP‐A spacecraft on magnetic field lines mapping to the point where the TOI intersected the midnight auroral oval as seen in GPS TEC imagery. Similarly, Walsh et al. (2014) reported THEMIS observations at ~12 Re altitude of enhanced cold plasma density on reconnecting dayside field lines mapping to the point where the SED plume entered the polar cap at the noontime cusp. These observations suggest that the density enhancements seen as the SED plumes and TOI at ionospheric heights could extend to very high altitudes along magnetospheric and polar cap field lines. In addition to the direct contribution of ion upflows/outflows from the cusp to the dayside reconnection site, cold plasma of the plasmaspheric plume origin has also been observed in the reconnection region (Lee et al., 2016).

      Polar cap patches are traditionally defined by plasma density enhancement and thus typically observed by LEO satellite or remotely sensed by ground‐based radars, but they can also be observed using optical instruments, such as 630 nm red line all‐sky imagers. The classical nighttime source for generating O(1D) is through dissociative recombination:

      This process is negligible in the sunlit atmosphere. The volume emission rate due to dissociative recombination in the absence of precipitating particles based on Link and Cogger (1988) is

      As one can see from the equations above, the patch luminosity depends on the altitude distribution of the electron density and also the neutral atmosphere property. It emits redline as it recombines. Therefore, its luminosity variation provides clues to some extent for the internal plasma dynamic processes. Hosokawa et al. (2011) used all‐sky imager at Resolute Bay to study patches, and found that the patch emission height should be around 295 km and not the 235 km obtained from the MSIS‐E90 and IRI‐2007 models, which highlight the deficiencies of these models in the polar region. They found that the e‐folding time of the patch decay can change from 1 hour to 4 hours for altitudes of 250 km and 290 km, respectively, due to charge exchange and recombination with molecular species. Therefore, characteristics of the polar cap patches, such as altitude profiles of electron density, are critical for the understanding of the ion‐neutral interactions within the patch, but they are often unknown because of a lack of continuous measurements deep in the polar cap. In fact, the ambiguity of the emission height introduced to the luminosity calculation has been realized before. Sojka et al. (1997) quantitatively estimated the effect of various density distribution vertically, and found that the patch emission can change as much as 400 R, when the F‐region peak height reduces from 360 km to 300 km.

Schematic illustrations of chart of the time, in s, taken to go down to 60% of the initial luminosity (blue contours) and of the ratio of the maximum luminosity to the starting luminosity (red contours) as a function of vertical drift (horizontal axis) and of the ratio of the starting density to the density (vertical axis).

      (from Perry et al., 2013; Reproduced with permission of John Wiley and Sons).

      On the other hand, when the electron gas is significantly heated, 630 nm emission can also be excited through thermal emission (Schunk & Nagy, 2018). This occurs when there are sufficient electrons with energy higher than 1.96 eV and they can excite the atomic oxygen ground state O(3P) to excited O(1D) state. When the excited O(1D) relaxes back to the ground state, a photon at 630 nm is emitted, such as seen in the stable aurora red (SAR arc) arc case (Kozyra et al., 1990). Kwagala et al. (2018) studied the occurrence rate of thermally excited 630 nm emission in the polar ionosphere and found that the emission has average intensity of 1–5 KR, higher than the typical recombination induced redline emission, and occurs more often СКАЧАТЬ