Stigmatic Optics. Rafael G González-Acuña
Чтение книги онлайн.

Читать онлайн книгу Stigmatic Optics - Rafael G González-Acuña страница 2

Название: Stigmatic Optics

Автор: Rafael G González-Acuña

Издательство: Ingram

Жанр: Физика

Серия: IOP Series in Emerging Technologies in Optics and Photonics

isbn: 9780750334631

isbn:

СКАЧАТЬ of light

       1.10 Refraction index

       1.11 Electromagnetic waves

       1.11.1 One-dimensional way

       1.11.2 Spherical coordinates

       1.12 End notes

       Further reading

       2 The eikonal equation

       2.1 From the wave equation, through Helmholtz equation to end with the eikonal equation

       2.2 The eikonal equation

       2.3 The ray equation

       2.3.1 n as constant

       2.3.2 n(r⃗) as a function

       2.4 The Snell law from eikonal

       2.5 The Fermat principle from eikonal

       2.6 End notes

       Further reading

       3 Calculus of variations

       3.1 Calculus of variations

       3.2 The Euler equation

       3.3 Newton’s second law

       3.4 End notes

       Further reading

       4 Optics of variations

       4.1 Introduction

       4.2 Lagrangian and Hamiltonian optics

       4.3 Law of reflection

       4.4 Law of refraction

       4.5 The Fermat principle and Snell’s law

       4.6 Malus–Dupin’s theorem

       4.7 End notes

       Further reading

       5 Stigmatism and stigmatic reflective surfaces

       5.1 Introduction

       5.2 Aberrations

       5.3 Conic mirrors

       5.4 Elliptic mirror

       5.5 Circular mirror

       5.6 Hyperbolic mirror

       5.7 Parabolic mirror

       5.8 End notes

       Further reading

       6 Stigmatic refractive surfaces: the Cartesian ovals

       6.1 Introduction

       6.2 Stigmatic surfaces

       6.2.1 Case I: ro=ri=0,zo→−∞ and zi=f

       6.2.2 Case II: ro=ri=0,zo=f and zi→−∞

       6.3 Analytical stigmatic refractive surfaces

       6.3.1 Case A: ro=ri=0, zo→−∞ and zi=f

       6.3.2 Case B: ro=ri=0,zo=f and zi→−∞

       6.3.3 Case C: ro=ri=0,zo=∓f and zi=±f

       6.3.4 Case D: ro=ri=0,zo=−αf and zi=+f

       6.3.5 Case E: ro=ri=0,zo=αf and zi=−f СКАЧАТЬ