Machine Vision Inspection Systems, Machine Learning-Based Approaches. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Machine Vision Inspection Systems, Machine Learning-Based Approaches - Группа авторов страница 19

СКАЧАТЬ 1. for (category in cat_list[]) 2. image_couples = get_similar_couples

       (category_images[category]) 3. traing_couples.add(image_couples) 4. expected_values.add([1] * image_couples.length) 5. for (category1 in cat_list[]) 6. for (category2 in cat_list[]) 7. If (category1 == category2) 8. Continue 9. image_couples=get_different_couples

       (category_images[category1],category_images[category2]) 10. training_couples.add(image_couples) 11. expected_values.add([0] * image_couples.length) 12. Shuffle (training_couples, expected_values) 13. return training_couples[], expected_values []

      The proposed methodology has experimented with a few models based on capsule networks, while keeping the convolutional Siamese network that has proposed by Koch et al. as a baseline. As an initial attempt to understand the applicability of Capsules in Siamese networks, we integrate the network proposed by Sabour et al. [9] to a Siamese network, which does not give satisfactory result due to its inability to converge properly. Sabour et al. proposed this model for the MNIST dataset which is a collection of 28 × 28 images of numbers. However, in our study, we scale out this model to 105 × 105 images of Omniglot dataset, which makes it highly compute-intensive to train the learning model.

Class Agreement (%)
Convolutional Siamese 94 ± 2%
Sabour et al. Capsule Siamese 78 ± 5%
Deep Capsule Siamese 1 89 ± 3%
Deep Capsule Siamese 2 95 ± 2.5%

      One expectation of this model is achieving the ability to generalize previous experience and use it to make decisions with completely new unseen alphabets. Thus, the n-way classification task was designed to evaluate the model in classifying previously unseen characters. Here, we have used 30 alphabets having 659 characters from the evaluation set of Omniglot dataset which was not used in the training. However, that makes the model completely unfamiliar with these characters.

      According to Figure 2.2, the proposed model of this study, capsule layer-based Siamese network classification has on par results with Koch et al.’s model with the convolutional Siamese network classification. However, our model has 2.4 million parameters, which is 40% less compared to 4 million parameters in Koch et al.’s model. Although the overall performance of Koch et al.’s model with the convolutional classification, and the proposed model in this study which is based on capsule network, are on par, there are certain cases our model shows superior performance. For instance, the proposed model has a superior capability of identifying minor changes in characters.

      For the n-way classification task, the statistical approach random guessing techniques are defined, such that if there are n options and if only one is correct, the chance of prediction being correct is 1/n. Thus, for the repeated experiment the accuracy is considered as a percentage of that probability. Here, the classification accuracy has dropped with the growth of the reference set, because then the solution space is large for the classification task. Nearest neighbor shows exponential degrades while Siamese networks have less reduction with a similar level of performance.

Schematic illustration of sample 1 classification results.