Название: Deepwater Flexible Risers and Pipelines
Автор: Yong Bai
Издательство: John Wiley & Sons Limited
Жанр: Физика
isbn: 9781119322733
isbn:
2 Chapter 3Table 3.1 Geometric and material parameters of FEM.Table 3.2 Pressure armor layer geometrical properties.Table 3.3 Steel strip geometrical properties.Table 3.4 Models with different inner radius.Table 3.5 Prediction by two theoretical models.
3 Chapter 4Table 4.1 Parameters for pressure armor layer.Table 4.2 Pipe’s parameters.
4 Chapter 5Table 5.1 Design requirements.Table 5.2 Geometrical parameters.Table 5.3 Material parameters.Table 5.4 Utilization factors for flexible pipe.Table 5.5 Load cases.Table 5.6 Maximum stresses and strains summary by layers.Table 5.7 Comparison between theoretical and FEM results.
5 Chapter 7Table 7.1 The maximum SM3 and SM2 in different coiling drum diameter.Table 7.2 The maximum SM3 in different sinking distance.Table 7.3 The maximum SM3 in different reeling length.Table 7.4 The maximum SM3 of each case.
6 Chapter 9Table 9.1 Riser parameters.Table 9.2 Other environmental parameters.Table 9.3 Result comparisons of analytical model and FEM by OrcaFlex.Table 9.4 Result comparisons in TDP area.
7 Chapter 10Table 10.1 Flexible riser parameters.Table 10.2 Environmental parameters.Table 10.3 Results of numerical method vs. FEM by OrcaFlex.
8 Chapter 11Table 11.1 Unbonded flexible pipe parameters.Table 11.2 Environment and hydrodynamic coefficients.Table 11.3 Static result comparisons.
9 Chapter 12Table 12.1 Physical parameters of the towed cable.Table 12.2 Physical parameters of the towed body.
10 Chapter 14Table 14.1 Wave scatter diagram.Table 14.2 Stochastic wave load.Table 14.3 Input parameters of flexible pipe.Table 14.4 Input parameters of hydrodynamic coefficient.
11 Chapter 16Table 16.1 STU layup data.Table 16.2 Comparing different STU fatigue approaches.Table 16.3 Comparing base case to sensitivities—all time domain.
12 Chapter 19Table 19.1 Dimension of specimens.Table 19.2 The results of external pressure test.Table 19.3 Dimension of FRGFP.Table 19.4 Material parameters of FGRFP.
13 Chapter 20Table 20.1 Geometric parameters of testing specimens.Table 20.2 Material properties of each layer.Table 20.3 Burst pressure of the testing specimen.Table 20.4 Comparison of three methods.
14 Chapter 21Table 21.1 Specifications of the tensile test specimen.Table 21.2 Geometric parameters of the tensile test specimen.Table 21.3 Material properties of FGRFP.Table 21.4 Ultimate tensile strength (kN).Table 21.5 Different diameter-thickness ratios of FGRFP.
15 Chapter 22Table 22.1 Dimensions of test facility.Table 22.2 Material properties of testing specimens.Table 22.3 Geometric parameters of testing specimens.Table 22.4 Valid length and diameter of specimens.Table 22.5 Summary of bending test data.
16 Chapter 23Table 23.1 Material properties of testing specimens.Table 23.2 Geometric parameters of testing specimens.Table 23.3 Valid length and diameter and diameter of specimens.Table 23.4 Elastic constants of reinforced layers.
17 Chapter 24Table 24.1 Long-term hydrostatic pressure reduction factor for composite pipes a...
18 Chapter 25Table 25.1 Size parameters of EGRFP.Table 25.2 Material parameters of EGRFP.Table 25.3 Environmental parameters.Table 25.4 Specific Parameters of the layer.
19 Chapter 26Table 26.1 Carcass properties.Table 26.2 Maximum possible contact pressure.
20 Chapter 27Table 27.1 Non-dimensional parameters.
21 Chapter 29Table 29.1 Pipe parameters.Table 29.2 Static analysis of flexible laying.Table 29.3 Top tension at different lay angles.Table 29.4 Top tension at different water depths.Table 29.5 Wave environmental parameters.Table 29.6 Ocean current parameters.Table 29.7 Dynamic response results in different wave directions.Table 29.8 Dynamic response results with a lay angle of 80°.Table 29.9 Sensitivity analysis results of different submerged weights.
Guide
1 Cover
5 Preface
9 Index
Pages
1 ii
2 iii
3 iv
4 xix
5 xx
6 xxi
СКАЧАТЬ