Название: Process Gas Chromatographs
Автор: Tony Waters
Издательство: John Wiley & Sons Limited
Жанр: Отраслевые издания
isbn: 9781119633013
isbn:
3 Chapter 3Figure 3.1 Effect of Component Solubility.Figure 3.2 Draw Your Own Chromatogram.Figure 3.3 Significance of an Air Peak.Figure 3.4 Typical Chromatogram Measurements.
4 Chapter 4Figure 4.1 The Doubling Rule.Figure 4.2 Diagnosing Peak Identities.Figure 4.3 Effect of Temperature Ramp.Figure 4.4 Fast Analysis of Natural Gas.Figure 4.5 Measurements for Separation Factor.Figure 4.6 Measurements for Resolution.Figure 4.7 Same Separation, Different Width.Figure 4.8 Patterns in Resolution.
5 Chapter 5Figure 5.2 A Very Old PGC with an Even Older PGC Engineer.Figure 5.3 Process Gas Chromatograph Functions.Figure 5.4 A Typical PGC Column Oven.
6 Chapter 6Figure 6.1 Effect of Impure Carrier Gas.Figure 6.2 A Vacancy Peak in a Real Chromatogram.Figure 6.3 Automatic Changeover Regulator.
7 Chapter 7Figure 7.1 Typical PGC Sample Injector Valve. Source: ABB Process Analytics ...Figure 7.2 Gas Sample Injection.Figure 7.3 Atmospheric Referencing Systems.Figure 7.4 Liquid Sample Injection.Figure 7.5 Plunger Valve for Liquid Sample Injection. Source: ABB Process An...
8 Chapter 8Figure 8.1 Function of a Spool Valve.Figure 8.2 Early Six‐Port Slide Valve.Figure 8.3 Slide Valve for Liquid‐Sample Injection.Figure 8.4 Slide Valve for Gas‐Sample Injection.Figure 8.5 Rotary Gas‐Sample Injector Valve.Figure 8.6 Example of a Valve Rotor and Stator.Figure 8.7 Six‐Port Rotary Liquid‐Sample Injector.Figure 8.8 Miniature Multiport Rotary Valve.Figure 8.9 Pressure‐Seal Diaphragm Valve.Figure 8.10 Piston/Plunger‐Seal Diaphragm Valve.Figure 8.11 Diaphragm Valve‐Switching Mechanism.Figure 8.12 Plunger Valve for Liquid Sample Injection.Figure 8.13 Typical Plunger Valve Operation.Figure 8.14 Purging Grooves to Intercept Leakage.
9 Chapter 9Figure 9.1 Type A Column System.Figure 9.2 Type B Column System.Figure 9.3 Type C Column System.Figure 9.4 Type D Column System.Figure 9.5 Ten‐Port Gas Injector and Backflush System.Figure 9.6 Distribution Column System.Figure 9.7 Heartcut Column System.Figure 9.8 A Real Heartcut Chromatogram. Source: Author's collection.Figure 9.9 Trap‐and‐Hold Column System.
10 Chapter 10Figure 10.1 Peak Distortion by Slow Detector Response.Figure 10.2 Principle of the Thermal Conductivity Detector.Figure 10.3 Intrinsically‐Safe Thermal Conductivity Detector.Figure 10.4 Typical Wheatstone Bridge Circuit.Figure 10.5 High‐Sensitivity Thermal Conductivity Detector.Figure 10.6 PGC Flame Ionization Detector.Figure 10.7 Principle of the Flame Ionization Detector.Figure 10.8 Typical PGC Flame Photometric Detector.Figure 10.9 Principle of the Flame Photometric Detector.Figure 10.10 Principle of the Electron Capture Detector.Figure 10.11 Principle of the Pulsed Discharge Detector.
11 Chapter 11Figure 11.1 1967 Beckman Series D Air‐Bath Oven. Source: Beckman Historical...Figure 11.2 Typical Air‐Bath Heater.Figure 11.3 Dual Oven in the Yokogawa GC1000 Mark II. Source: Yokogawa Elec...Figure 11.4 The 1971 GEC Elliot Chromatograph Mark 6.Figure 11.5 The 1987 Yokogawa GC8 PGC Oven. Source: Yokogawa Electric Corpo...Figure 11.6 The 2008 ABB PGC1000 Transmitter. Source: ABB Process Analytics Figure 11.7 The 2014 Rosemount 370XA PGC. Source: Rosemount Inc. Reproduced...Figure 11.8 The 2009 Rosemount 700XA PGC. Source: Rosemount Inc. Reproduced...Figure 11.9 An Airless Oven and Separate Detector Compartment. Source: Siem...Figure 11.10 Fast PGC Separation of Paraffins. Source: ABB Process Analytics Figure 11.11 A PGC With Directly‐Heated Column. Source: ABB Process Analytic...Figure 11.12 The 2007 Teledyne Calidus Portable Analyzer. Source: Teledyne ...Figure 11.13 A Direct‐Heated Column Module. Source: Teledyne Analytical Inst...Figure 11.14 Fast Isothermal Analysis of Hydrocarbons. Source: Qmicro B.V. Figure 11.15 The 2002 Siemens MicroSAM PGC. Source: Siemens Analytical Prod...
12 Chapter 12Figure 12.3 Circa 1964 Beckman Model 620 Programmer.Figure 12.4 The 1978 AAI Optichrom 2100 Control Unit.Figure 12.5 Typical Method of Setting Peak Parameters.Figure 12.6 The 1985 Servomex Model CP 409 Programmer.Figure 12.7 The 1985 Servomex Model CP 403 Programmer.Figure 12.8 The 1979 Yokogawa Model GC6P Control Unit.Figure 12.9 The 2010 Envent Model 131 Natural Gas PGC.
13 Chapter 13Figure 13.1 Historical PGC Data Displays.Figure 13.2 The 1960 Greenbrier Chroma‐Matic III‐A Programmer.Figure 13.3 Principle of an Analog Peak Picker.Figure 13.4 The 1975 Bendix 7000 Digital Programmer.
14 Chapter 14Figure 14.1 Sampled‐Data Method of Digitizing a Peak.Figure 14.2 The 2010 Rosemount 2350A Control Unit.Figure 14.3 The 2002 Siemens Maxum™ Edition II PGC.Figure 14.4 Error by Negative Peak in Peak Gate.Figure 14.5 Area Allocation by Perpendicular Drop.Figure 14.6 Error by Perpendicular Drop for 9:1 Peak Areas.Figure 14.7 Error by Integrating to a Valley Point.Figure 14.8 Error by Integrating Valley‐to‐Valley.Figure 14.9 Angular Drop Method for 9:1 Peak Areas.Figure 14.10 Tangent Skim for a Rider Peak.
15 Chapter 15Figure 15.1 A Validation Control Chart. Source: Siemens Analytical Products ...
16 1Figure 1.1 A Classic Process Gas Chromatograph.
17 2Figure 5.1 A Classic Process Gas Chromatograph.
18 3Figure 12.1 The 1979 Beckman Model 6750 Chromatograph Data Processor.Figure 12.2 The 2008 ABB Model PGC5000A Master Controller.
Guide
1 Cover
2 Table of Contents
Pages
1 iv
2 v
3 xviii
4 xix
5 xx
6 xxi
7 xxii
8 xxiii
9 xxiv
10 СКАЧАТЬ