Quantifying Human Resources. Clotilde Coron
Чтение книги онлайн.

Читать онлайн книгу Quantifying Human Resources - Clotilde Coron страница 6

Название: Quantifying Human Resources

Автор: Clotilde Coron

Издательство: John Wiley & Sons Limited

Жанр: Экономика

Серия:

isbn: 9781119721741

isbn:

СКАЧАТЬ tests are probably the most widely known tests of human intellectual ability for the general public. There are actually two definitions of IQ: intellectual development speed index (IQ-Stern) or group positioning index (IQWechsler). IQ-Stern depends on the age of the individual and measures the intellectual development of children. The IQ-Wechsler, defined in the late 1930s, is not a quotient, as its name suggests, but a device for calibrating individuals’ scores on an intellectual test. For example, an IQ of 130 corresponds to a 98 percentile (98% of the population scores below 130), while an IQ of 115 corresponds to the third quartile (75% of the population scores below 115). There are many debates about IQ tests. In particular, its opponents point out that tests measure only one form of intelligence, or that test results may depend to a large extent on educational inequalities, which makes them of little use in formulating educational policies.

      Less well known to the general public, Spearman’s theory of the g factor is based on the observation that the results of the same individual on different intelligence tests are strongly correlated with each other, and infers that there is a common factor of cognitive ability. The challenge is therefore to measure this common factor. Multiple models were thus proposed during the 20th Century.

      The second argument criticizes the decontextualization of psychotechnical measures, whereas many individual behaviors and motivations are closely linked to their context (e.g., work). This argument can be found in several theoretical currents. Thus, sociologists, ergonomists and some occupational psychologists argue that the measurement of intelligence is all the more impossible to decontextualize since it is also distributed outside the limits of the individual: it depends strongly on the people and tools used by the individual (Marchal 2015). However, as Marchal (2015) points out, work activities are “situated”, i.e. it is difficult to extract the activity from the context (professional, relational) in which it is embedded. This criticism is all the more valid for tests aimed at measuring a form of generic intelligence or performance, which is supposed to guarantee superior performance in specific areas. The g factor theory (Box I.1) is an instructive example of this decontextualized generalization, since it claims to measure a generic ability that would guarantee better performance in specific work activities. In practice, the same person, therefore with the same measure of g factor, may prove to be highly, or on the contrary, not very efficient depending on the work context in which he or she is placed.

      Finally, the fourth argument emphasizes that, unlike objects and things, human beings can react and interact with the quantification applied to them. Thus, Hacking (2001, 2005) studies classification processes and more particularly human classifications, i.e. those that concern human beings: obesity, autism, poverty etc. He then refers to “interactive classification”, in the sense that the human being can be affected and even transformed by being classified in a category, which can sometimes lead to changes in category. Thus, a person who is entering the “obese” category after gaining weight may, due to this simple classification, want to lose weight and may therefore leave the category. This is what Hacking (2001, p. 9) calls the “loop effect of human specifications”. He recommends that the four elements underlying human classification processes (Hacking 2005) be studied together: classification and its criteria, classified people and behaviors, institutions that create or use classifications, and knowledge about classes and classified people (science, popular belief, etc.). Therefore, the possibility of quantifying human beings in a neutral way comes up against these interaction effects.

       I.3. HR quantification: effective solution or myth? Two lines of research

      In response to these questions on the specificities of human quantification, two theoretical currents can be identified on the use of HR quantification.

      One, generally normative, tends to consider quantification as an effective solution to improve HR decision-making, whether in recruitment or other areas. This approach thus supports evidence-based management (EBM), in other words management based on evidence which is most often made up of figures and measurements. In the EBM approach, quantification is therefore proof and can cover a multiplicity of objects: quantifying to better evaluate individuals (in line with the psychotechnical approach), or to know them better, or to better understand global HR phenomena (absenteeism, gender equality), all in order to make better decisions. The EBM approach thus considers that quantification improves decision-making, processes and policies, including HR. Lawler et al. (2010) thus believe that the use of figures and the EBM approach have become central to making the HR function a strategic function of the company. For example, they identify three types of metrics of interest in an EBM approach: the efficiency and effectiveness of the HR function, and the impact of HR policies and practices on variables such as organizational performance. More generally, according to the work resulting from this approach, quantification makes it possible to meet several HR challenges. The first challenge is to make the right human resources management decisions: recruitment, promotion and salary increases, for example. The psychotechnical approach already mentioned seems to provide an answer to this first challenge: by measuring individuals’ skills, motivations and abilities in an objective way, it seems to guarantee greater objectivity and rigor in HR decision-making.