Biopolymers for Biomedical and Biotechnological Applications. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Biopolymers for Biomedical and Biotechnological Applications - Группа авторов страница 28

Название: Biopolymers for Biomedical and Biotechnological Applications

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Химия

Серия:

isbn: 9783527818303

isbn:

СКАЧАТЬ Miyanishi, N., Iwamoto, Y., Watanabe, E., and Oda, T. (2003). Induction of TNF‐α production from human peripheral blood monocytes with β‐1,3‐glucanoligomer prepared from laminarin with β‐1,3‐glucanase from Bacillus clausii NM‐1. Journal of Bioscience and Bioengineering 95 (2): 192–195.

      115 115 Fu, Y., Zhao, X., and Du, Y. (2011). Research progresses on plant resistance induced by β‐glucan oligomer. Chinese Journal of Biological Control 27 (2): 260–275.

      116 116 Bajaj, I.B., Survase, S.A., Saudagar, P.S., and Singhal, R.S. (2007). Gellan gum: fermentative production, downstream processing and applications. Food Technology and Biotechnology 45 (4): 341–354.

      117 117 Freitas, F., Alves, V.D., Coelhoso, I., and Reis, M.A.M. (2013). Production and food applications of microbial biopolymers. In: Engineering Aspects of Food Biotechnology, . Part I: Use of Biotechnology in the Development of Food Processes and Products (eds. J.A. Teixeira and A.A. Vicente), 61–83. Boca Raton, FL: CRC Press, Taylor & Francis Group.

      118 118 Zia, K.M., Tabasum, S., Khan, M.F. et al. (2018). Recent trends on gellan gum blends with natural and synthetic polymers: a review. International Journal of Biological Macromolecules 109: 1068–1087.

      119 119 Mariod, A. and Fadul, H. (2013). Review: gelatin, source, extraction and industrial applications. Acta Scientarum Plonorum Technologia Alimentaria 12 (2): 135–147.

      120 120 Saha, D. and Bhattacharya, S. (2010). Hydrocolloids as thickening and gelling agent in food: a critical review. Journal of Food Science and Technology 47 (6): 587–597.

      121 121 Pacelli, S., Paolicelli, P., Avitabile, M. et al. (2018). Design of a tunable nanocomposite double network hydrogel based on gellan gum for drug delivery applications. European Polymer Journal 104: 184–193.

      122 122 Paolicelli, P., Petralito, S., Varani, G. et al. (2018). Effect of glycerol on the physical and mechanical properties of thin gellan gum films for oral drug delivery. International Journal of Pharmaceutics 547 (1–2): 226–234.

      123 123 Hill, L.J., Moakes, R.J.A., Vareechon, C. et al. (2018). Sustained release of decorin to the surface of the eye enables scarless corneal regeneration. Regenerative Medicine 3: 23.

      124 124 Osmalek, T., Froelich, A., and Tasarek, S. (2014). Application of gellan gum in pharmacy and medicine. International Journal of Pharmaceutics 466 (1–2): 328–340.

      125 125 Öner, E.T., Hernàndez, L., and Combie, J. (2016). Review of levan polysaccharide: from a century of past experiences to future prospects. Biotechnology Advances 34 (5): 827–844.

      126 126 Srikanth, R., Reddy, C.H.S.S.S., Siddartha, G. et al. (2015). Review on production, characterization and applications of microbial levan. Carbohydrate Polymers 120: 102–114.

      127 127 Silbir, S., Dagbagli, S., Yegin, S. et al. (2014). Levan production by Zymomonas mobilis in batch and continuous fermentation. Carbohydrate Polymers 99: 454–461.

      128 128 Zhang, T., Li, R., Qian, H. et al. (2014). Biosynthesis of levan by levansucrase from Bacillus methylotrophicus SK 21.002. Carbohydrate Polymers 101: 975–981.

      129 129 González‐Garcinuño, A., Tabernero, A., Dominguez, A. et al. (2018). Levan and levansucrase: polymer enzyme, microorganisms and biomedical applications. Biocatalysis and Biotransformation 36: 233–244.

      130 130 Jia, Y., Zhu, J., Chen, X. et al. (2013). Metabolic engineering of Bacillus subtilis for the efficient biosynthesis of uniform hyaluronic acid with controlled molecular weights. Bioresource Technology 132: 427–431.

      131 131 Vázquez, J.A., Montemayor, M.I., Fraguas, J., and Murado, M.A. (2009). High production of hyaluronic and lactic acids by Streptococcus zooepidemicus in fed‐batch culture using commercial and marine peptones from fishing by‐products. Biochemical Engineering Journal 44 (2–3): 125–130.

      132 132 Allemann, I.B. and Baumann, L. (2008). Hyaluronic acid gel (Juvéderm) preparations in the treatment of facial wrinkles and folds. Clinical Interventions in Aging 3 (4): 629–634.

      133 133 Benedini, L.J. and Santana, M.H. (2013). Effects of soy peptone on the inoculum preparation of Streptococcus zooepidemicus for production of hyaluronic acid. Bioresource Technology 130: 798–800.

      134 134 Berkó, S., Maroda, M., Bodnár, M. et al. (2013). Advantages of cross‐linked versus linear hyaluronic acid for semisolid skin delivery systems. European Polymer Journal 49 (9): 2511–2517.

      135 135 Rezaeeyiazdi, M., Colombani, T., Memic, A., and Bencherif, S.A. (2018). Injectable hyaluronic acid‐co‐gelatin cryogels for tissue‐engineering applications. Materials 11 (8): 1374.

      136 136 Tiwari, S., Patil, R., and Bahadur, P. (2019). Polysaccharide based scaffolds for soft tissue engineering applications. Polymers 11 (1): 1.

      137 137 Ahmad, N.H., Mustafa, S., and Che Man, Y.B. (2015). Microbial polysaccharides and their modification approaches: a review. International Journal of Food Properties 18 (2): 332–347.

      138 138 Barbucci, R., Spera, V., Armenia, E., and Quagliariello, V. (2017). Microarchitecture of water confined in hydrogels. In: Hydrogels: Design, Synthesis and Application in Drug Delivery Systems and Regenerative Medicine (eds. T.R.R. Singh, G. Laverty and R. Donnelly), 1–31. CRC Press, Taylor & Francis Group.

      139 139 Leone, G. and Barbucci, R. (2009). Polysaccharide based hydrogels for biomedical applications. In: Hydrogels (ed. R. Barbucci), 25–41. Milano: Springer.

      140 140 Ahmed, E.M. (2015). Hydrogel: preparation, characterization and applications: a review. Journal of Advanced Research 6: 105–121.

      141 141 Bathia, J.K., Kaith, B.S., and Kalia, S. (2013). Polysaccharide hydrogels: synthesis, characterization and applications. In: Polysaccharide Based Graft Copolymers (eds. S. Kalia and M.W. Sabaa), 271–290. Berlin, Heidelberg: Springer‐Verlag.

      142 142 Hoffman, A.S. (2012). Hydrogels for biomedical applications. Advanced Drug Delivery Reviews 64: 18–23.

      143 143 Gacesa, P. (1988). Alginates. Carbohydrate Polymers 8: 161–182.

      144 144 Oliveira, J.T. and Reis, R.L. (2008). Hydrogels from polysaccharide‐based materials: fundamentals and applications in regenerative medicine. In: Natural‐Based Polymers for Biomedical Applications (eds. R.L. Reis, N.M. Neves, J.F. Mano, et al.), 485–514. Woodhead Publishing.

      145 145 Usta, U. and Asmatulu, R. (2015). Hydrogels in various biomedical applications. In: Polymer Science: Research Advances, Practical Applications and Educational Aspects (eds. A. Méndez‐Vilas and A. Solano), 248–257. Formatex Research Center.

      146 146 Deen, G.R. and Loh, X.J. (2018). Stimuli‐responsive cationic hydrogels in drug delivery applications. Gels 4 (1): 1–13.

      147 147 Soppimath, K.S., Aminabhavi, T.M., Dave, A.M. et al. (2002). Stimulus‐responsive “smart” hydrogels as novel drug delivery systems. Drug Development and Industrial Pharmacy 28 (8): 957–974.

      148 148 Rudzinski, W.E., Dave, A.M., Vaishnav, U.H. et al. (2002). Hydrogels as controlled release devices in agriculture. Designed Monomers and Polymers 5 (1): 39–65.

      149 149 Ferris, C.J., Gilmore, K.J., Wallace, G.G., and Panhuis, M. (2013). Modified gellan gum hydrogels for tissue engineering applications. Soft Matter 9: 3705–3711.

      150 150 Graham, S., Marina, P.F., and Blencowe, A. (2019). Thermoresponsive polysaccharides and their thermoreversible physical СКАЧАТЬ