Название: Biopolymers for Biomedical and Biotechnological Applications
Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Жанр: Химия
isbn: 9783527818303
isbn:
77 77 Lee, J.‐B., Hayashi, K., Hirata, M. et al. (2006). Antiviral sulfated polysaccharide from Navicula directa, a diatom collected from deep‐sea water in Toyama Bay. Biological and Pharmaceutical Bulletin 29 (10): 2135–2139.
78 78 Torres, C.A.V., Marques, R., Antunes, S. et al. (2011). Kinetics of production and characterization of the fucose containing exopolysaccharide from Enterobacter A47. Journal of Biotechnology 156: 261–267.
79 79 Alves, V.D., Freitas, F., Torres, C.A.V. et al. (2010). Rheological and morphological characterization of the culture broth during exopolysaccharide production by Enterobacter sp. Carbohydrate Polymers 81: 758–764.
80 80 Kumar, S.A., Mody, K., and Jha, B. (2007). Bacterial exopolysaccharides – a perception. Journal of Basic Microbiology 47: 103–117.
81 81 Manivasagan, P. and Oh, J. (2016). Marine polysaccharide‐based nanomaterials as a novel source of nanobiotechnological applications. International Journal of Biological Macromolecules 82: 315–327.
82 82 Aimé, C. and Coradin, T. (2012). Nanocomposites from biopolymer hydrogels: blueprints for white biotechnology and green materials chemistry. Journal of Polymer Science Part B: Polymer Physics 50: 669–680.
83 83 Prasongsuk, S., Loytakul, P., Ali, I. et al. (2018). The current status of Aureobasidium pullulans in biotechnology. Folia Microbiologica 63 (2): 129–140.
84 84 Tabasum, S., Noreen, A., Maqsood, M.F. et al. (2018). A review on versatile applications of blends and composites of pullulan with natural and synthetic polymers. International Journal of Biological Macromolecules 120: 603–632.
85 85 Cheng, K., Demirci, A., and Catchmark, J.M. (2011). Pullulan: biosynthesis, production, and applications. Applied Microbiology and Biotechnology 92: 29–44.
86 86 Singh, R.S., Saini, G.K., and Kennedy, J.F. (2008). Pullulan: microbial sources, production and applications. Carbohydrate Polymers 73 (4): 515–531.
87 87 Giustina, G.D., Gandin, A., Brigo, L. et al. (2019). Polysaccharide hydrogels for multiscale 3D printing of pullulan scaffolds. Materials and Design 165: 107566.
88 88 Taskin, M., Erdal, S., and Canli, O. (2010). Utilization of waste loquat (Eriobotrya japonica Lindley) kernels as substrate for scleroglucan production by locally isolated Sclerotium rolfsii. Food Science and Biotechnology 19: 1069–1075.
89 89 Castillo, N.A., Valdez, A.L., and Fariña, J.I. (2015). Microbial production of scleroglucan and downstream processing. Frontiers in Microbiology 6: 1106.
90 90 Davison, P. and Mentzer, E. (1982). Polymer flooding in North‐sea reservoirs. Society of Petroleum Engineers Journal 22 (3): 353–362.
91 91 Pirri R., Gadioux J., Rivenq R. (1995) Scleroglucan gel applied in the oil industry. EP 1995/0484217A1.
92 92 Survase, S.A., Saudagar, P.S., Bajaj, I.B., and Singhal, R.S. (2007). Scleroglucan: fermentative production, downstream processing and applications. Food Technology and Biotechnology 45 (2): 107–118.
93 93 Asjadi, S.E., Nerderpel, Q.A., Cotiuga, I.M. et al. (2018). Biopolymer scleroglucan as an emulsion stabilizer. Colloids and Surfaces A: Physicochemical and Engineering Aspects 546: 326–333.
94 94 Zhang, Y., Kong, H., Fang, Y. et al. (2013). Schizophyllan: a review on its structure, properties, bioactivities and recent developments. Bioactive Carbohydrates and Dietary Fibre 1 (1): 53–71.
95 95 Imeson, A. (ed.) (2010). Food Stabilisers, Thickening and Gelling Agents. Wiley Blackwell: United Kingdom.
96 96 Katzbauer, B. (1998). Properties and applications of xanthan gum. Polymer Degradation and Stability 59 (1–3): 81–84.
97 97 Rottava, I., Batesini, G., Silva, M.F. et al. (2009). Xanthan gum production and rheological behaviour using different strain of Xanthomonas sp. Carbohydrate Polymers 77 (1): 65–71.
98 98 Petri, D.F.S. (2015). Xanthan gum: a versatile biopolymer for biomedical and technological applications. Journal of Applied Polymer Science 132 (23): 420–435.
99 99 Caldeira, I., Lüdtke, A., Tavares, F. et al. (2018). Ecologically friendly xanthan gum‐PVA matrix for solid polymeric electrolytes. Ionics 24: 413–420.
100 100 Tavares, F.C., Dörr, D.S., Pawlicka, A., and Avellaneda, C.O. (2018). Microbial origin xanthan gum‐based solid polymer electrolytes. Journal of Applied Polymer Science https://doi.org/10.1002/app.46229.
101 101 Naessens, M., Cerdobbel, A., Soetaert, W., and Vandamme, E.J. (2005). Leuconostoc dextransucrase and dextran: production, properties and applications. Journal of Chemical Technology and Biotechnology 80: 845–860.
102 102 Zhou, Q., Feng, F., Yang, Y. et al. (2018). Characterization of a dextran produced by Leuconostoc pseudomesenteroides XG5 from homemade wine. International Journal of Biological Macromolecules 107: 2234–2241.
103 103 Kamoun, E.A., Kenawy, E.S., and Chen, X. (2017). A review on polymeric hydrogel membranes for wound dressing applications: PVA‐based hydrogel dressings. Journal of Advanced Research 8: 217–233.
104 104 Maslakci, N.N., Ulusoy, S., Uygun, E. et al. (2017). Ibuprofen and acetylsalicylic acid loaded electrospun PVP‐dextran nanofiber mats for biomedical applications. Polymer Bulletin 74: 3283–3299.
105 105 Rai, S., Kureel, A.K., Dutta, P.K., and Mehrotra, G.K. (2018). Phenolic compounds based conjugates from dextran aldehyde and BSA: preparation, characterization and evaluation of their anti‐cancer efficacy for therapeutic applications. International Journal of Biological Macromolecules 110: 425–436.
106 106 Singh, A., Dutta, P.K., Kumar, H. et al. (2018). Synthesis of chitin‐glucan‐aldehyde‐quercetin conjugate and evaluation of anticancer and antioxidant activities. Carbohydrate Polymers 193: 99–107.
107 107 Alibolandi, M., Mohammadi, M., Taghdisi, S.M. et al. (2017). Synthesis and preparation of biodegradable hybrid dextran hydrogel incorporated with biodegradable curcumin nanomicelles for full thickness wound healing. International Journal of Pharmaceutics 532 (1): 466–477.
108 108 Cao, L., Tian, H., Wu, M. et al. (2018). Determination of curdlan oligosaccharides with high performance anion exchange chromatography with pulsed amperometric detection. Journal of Analytical Methods in Chemistry 2018: 3980814.
109 109 Liu, Y., Gu, Q., Ofosu, F.K., and Yu, X. (2015). Isolation and characterization of curdlan produced by Agrobacterium HX1126 using ‐lactose as substrate. International Journal of Biological Macromolecules 81: 498–503.
110 110 Yang, M., Zhu, Y., Li, Y. et al. (2016). Production and optimization of curdlan produced by Pseudomonas sp. QL212. International Journal of Biological Macromolecules 89: 25–34.
111 111 Chien, C.Y., Enomoto‐Rogers, Y., Takemura, A., and Iwata, T. (2017). Synthesis and characterization of regioselectively substituted curdlan hetero esters via an unexpected acyl migration. Carbohydrate Polymers 155: 440–447.
112 112 Miwa, M., Nakao, Y., and Nara, K. (1994). Food applications of Curdlan. In: Food Hydrocolloids, Structures, Properties, and Functions (eds. K. Nishinari and E. Doi), 119–124. New York: Plenum Press.
113 113 Hida, T.H., Ishibashi, K., Miura, N.N. et al. (2009). Citokine induction by a linear 1,3‐glucan, СКАЧАТЬ