Название: Искусственный интеллект и Машинное обучение. Основы программирования на Python
Автор: Тимур Казанцев
Издательство: ЛитРес: Самиздат
Жанр: Учебная литература
isbn: 978-5-532-04002-1
isbn:
И в конце, на что еще хотелось бы обратить внимание. Как уже было сказано, и ГО и МО являются только частью более общей области под названием ИИ. Так вот, в сложных проектах, как правило, присутствует несколько видов алгоритмов ИИ, и глубокое обучение и машинное обучение, и другие виды. Например, во время движения беспилотного автомобиля участвует более 100 различных алгоритмов, которые ответственны за распознавание объектов, управление движением, навигацию, безопасность, и т.д.
Как вы заметили по приведенным примерам, ИИ уже используется во многих областях в нашей повседневной жизни. Считается, что в ближайшие пару десятилетий ИИ будет использоваться большинством компаний и охватывать большую часть нашей жизнедеятельности.
Основные задачи и методы машинного обучения
Обучение с учителем и обучение без учителя
Если вы интересовались темой искусственного интеллекта и машинного обучения, возможно вы уже встречались с такими понятиями как обучение с учителем (на англ. supervised learning) и обучение без учителя (unsupervised learning). В этой главе мы узнаем, чем отличаются эти два понятия.
Во-первых, они оба являются видами машинного обучения.
Во-вторых, обучение с учителем не обязательно подразумевает, что кто-то стоит над компьютером и контролирует каждое его действие. В терминах машинного обучения, обучение с «учителем» означает, что человек уже подготовил данные для дальнейшей работы над ними компьютером, то есть у каждого объекта имеется метка (на англ. label) которая выделяет этот объект от остальных объектов или дает ему какое-то именное или числовое наименование. И компьютеру остается только найти закономерности между признаками объектов и их наименованиями, основываясь на этих подготовленных или как их называют помеченных данных. На английском такие данные называются labeled data.
Обучение с учителем включает два основных типа задач: регрессия и классификация. Давайте посмотрим на типичный пример задачи классификации.
Это будет пример цветков ириса Фишера. Этот набор данных стал уже классическим, и часто используется для иллюстрации работы различных статистических алгоритмов. Вы можете найти его по следующей ссылке (https://gist.github.com/curran/a08a1080b88344b0c8a7) либо просто вбив в интернете.
В природе существует три вида цветков ириса. Они отличаются друг от друга размерами лепестка и чашелистника. Все данные по цветкам занесены в таблицу, в столбиках указаны длина и ширина лепестка, а также длина и ширина чашелистника. В последнем столбце указан вид ириса – Ирис щетинистый (Iris setosa), Ирис виргинский (Iris virginica) и Ирис разноцветный (Iris versicolor). Тот СКАЧАТЬ