Название: Искусственный интеллект и Машинное обучение. Основы программирования на Python
Автор: Тимур Казанцев
Издательство: ЛитРес: Самиздат
Жанр: Учебная литература
isbn: 978-5-532-04002-1
isbn:
Например, если взять пример шахмат, то в примере с ИИ, мы даем машине много логических правил, и на их основе она учится играть. А в примере с МО, мы даем машине много примеров прошлых игр, она изучает их и анализирует почему одни игроки выигрывали, а другие проигрывали, какие шаги вели к успеху, а какие – к поражению. И на основе этих примеров, машина сама создает алгоритмы и правила как надо играть в шахматы, чтобы выиграть.
Другой пример, предположим, нам надо понять, как будет вести себя цена квартиры при изменении тех или иных параметров, например, в зависимости от площади, удаленности от метро, этажности и прочих факторов. Мы загружаем данные с разными квартирами, и компьютер создает модель, по которой можно будет предсказать цены в зависимости от этих факторов. Мы можем регулярно обновлять эти данные, и наш алгоритм будет обучаться на основе этих новых данных и каждый раз будет усовершенствовать свою точность по предсказанию цены в зависимости от параметров.
Идем дальше. Глубокое обучение – это подотрасль МО, то есть здесь тоже компьютер обучается, но обучается немного по-другому, чем в стандартном МО. В ГО используются нейронные сети (НС), которые представляют собой алгоритмы, повторяющие логику нейронов человеческого мозга. Большие объемы данных проходят через эти нейронные сети, и на выходе выдаются уже готовые ответы. Нейронные сети намного сложнее, чем обычное машинное обучение, и мы можем не всегда понимать, какие факторы имеют больший вес на тот или иной ответ, но использование нейронных сетей также помогает решать очень запутанные задачи в наше время. Иногда нейронные сети называют даже черным ящиком, потому что мы не всегда можем понять, что происходит внутри этих сетей.
Предположим, ваш компьютер оценивает, насколько хорошо написано эссе. Если вы используете ГО, то компьютер вам просто выдаст финальное решение, что эссе хорошее либо нет, и скорее всего, ответ будет очень близок к тому, как бы оценил это эссе человек. Но вы не сможете понять, почему было принято такое решение, потому что в ГО используются несколько уровней НС, что делает его очень трудно интерпретируемым. Вы не будете знать какой узел НС был активирован, и как эти узлы вели себя вместе, чтобы прийти к этому результату. Если же вы используете МО, например, алгоритм «дерево решений», то там видно какой фактор сыграл решающую роль в определении качества эссе.
Нейронные сети были известны еще в 20 веке, но тогда они были не настолько глубокими, там был всего один или два слоя, и они не давали таких хороших результатов, как другие алгоритмы МО. Поэтому на какое-то время они отошли на второй план. Однако они стали популярны в последнее время, особенно примерно с 2006 года, когда появились огромные наборы СКАЧАТЬ