Survivors: The Animals and Plants that Time has Left Behind. Richard Fortey
Чтение книги онлайн.

Читать онлайн книгу Survivors: The Animals and Plants that Time has Left Behind - Richard Fortey страница 10

СКАЧАТЬ – if hardly velvety. George soon finds a second worm hiding away inside the log, and then a third; they evidently do not mind one another’s company. They attempt to twist away from us in a most peculiar fashion: they seem to be capable of drastically changing their length. It looks as if they can stretch or squash like concertinas. They are highly flexible, too, and one of them turns into a tight ‘S’ shape with no trouble. ‘That’s not like a caterpillar’, I say to George. He grins back at me, sharing my pleasure in the discovery. They clearly have a front and a back, for at the forward end are a prominent pair of antennae – which lead the way the animals want to flee. Their movement is not worm-like at all, despite their name. It is accomplished by means of little conical stumpy legs on either side of the long body. On the hand these make an oddly prickly-tickly sensation. Velvet worms are clearly very odd invertebrates.

      The Peripatus animals evidently live alongside the termites inside rotting pine logs; indeed, they feed on the little insects, pursuing them through the chambers inside, doubtless detecting them with their sensitive ‘feelers’. They trap their prey by means of a sticky slime produced in special glands. Nothing else in nature feeds in exactly the same way. One of George’s students proved that the slime only entraps termites of the right size – not too big to escape, not too small to be uneconomic – after all, slime is protein, and that is expensive for the creatures to make. I try out the feel of it; it is distinctly tacky, and it must be like glue to a termite. Both the velvet worm and the termites shun the sunlight with good reason. They lose water very rapidly through their thin ‘skins’. The velvet worm is little more than a bag of fluid surrounded by a membrane. In bright sun it would soon dry to a crisp. Inside the hermetic and lightless world of a decaying pine tree the relative humidity is nearly always 100 per cent and it is perfectly safe.

      Poking about some more in the rotten wood we make another discovery: baby velvet worms. They are only about one centimetre long, and pale in colour, but they seem to be exact small versions of the large ones. I presume they must eat suitably diminutive termites. The worms grow continuously to achieve adult size, blowing up like balloons. The velvet worm actually gives birth to live young, and the ones we saw may have been newly born. This is unusual among invertebrates, and even among vertebrates is only characteristic of mammals (and a few specialised reptiles). The eggs of this particular velvet worm are few in number, and large and yolky, thus allowing for further embryonic development within the female; only three or four young are born at one time. There are two ‘litters’ a year. Since the animals live for three years they only have about twenty offspring, which is an extraordinarily small number when one remembers that most arthropods, for example, lay thousands of eggs: recall our horseshoe crabs. The most prolific velvet worm species produces no more than forty young a year. It seems that Peripatus is an animal with a personality all its own.

      Looking a little more closely at the velvet worm, the first thing to notice is that the body seems to be made out of many rings that encircle the body, even the legs and antennae. They remind me of the Michelin Man, supreme advertising logo of the famous tyre company, all dressed up in his bands of rubber. It is this distinctive structure that accounts for the body’s elastic properties. Muscles circle the body cavity inside the skin. Then it is obvious that this is a segmented animal rather like a trilobite, with lots of similar units repeated along the length of the body. Each body segment carries a pair of those stumpy legs. Among living species of velvet worms the number of segments varies quite widely, but, biologically speaking, that is only a matter of tacking on extra identical units, and does not require massive tinkering at the genetic level. To prove this, there is even one velvet worm species that can have between twenty-nine and forty-three body segments. The short, stumpy legs propel the animal along by working in sequence in waves, a common feature among segmented animals. From the side, it looks as if one leg hands on a motion to its neighbour progressively in a common direction. Forward movement would obviously not be possible if legs pushed forwards entirely at random; cooperation is required. The legs remind me of the limbs of a child’s stuffed toy, rather like those belonging to Piglet as illustrated by E. H. Shepard in The House at Pooh Corner, but they work well enough to catch up with termites. After all, one does not need a Maserati to overtake a donkey. Looking more closely at the surface of the ‘skin’ each of the body rings carries a line of protuberances, giving the external surface a knobbly appearance, especially on its upper side – these are known as papillae (they may have even smaller secondary papillae upon them). The patterns of the papillae vary between velvet worm species, as does the overall colour. There is one magnificently blue species elsewhere in New Zealand.

      The head of Peripatus is most obviously identified by its pair of antennae. But close to the front on the underside is the mouth, which is provided with sickle-like jaws to either side, each equipped with a pair of blades at the tip that are produced by a local thickening of the skin, or cuticle. They are simple but efficient shredders. The ducts for the slime glands open at the side of the head. There are no eyes. As for the legs, they are little more than stumpy projections off the body equipped with muscles internally to swing them backwards and forwards. Their feet carry two sickle-shaped claws at their tips, which are much like the jaws in structure; this may indeed provide a clue to the evolutionary origins of the more specialised jaw. Males and females are similar, except that the former are usually a little smaller and are less common.

      Inside they are pretty simple, too. The major part of the body is taken up with the stomach, which runs along the length of the animal to the anus at the end. Between the gut and the mouth there is a short oesophagus and a muscular pharynx, which is used for initial food processing. Oxygen absorption is achieved through tiny tubes inside the body called tracheae that have their apertures located in depressions between the papillae. There are no special gills or lungs because animals of this size can get all the oxygen they need through thinned parts of the cuticle. The heart is another simple tube, positioned at the top of the body above the stomach. The rest of the vascular system is much as in the horseshoe crab Limulus, distributed rather diffusely through the internal cavity. Peripatus gets rid of its waste products by means of nephridia, kidney-like organs, located in the legs along with small excretory openings. The nerve cord is a double structure running along most of the length of the animal, with cross connections that make it look somewhat like a ladder: nerves extend from this into the segments and limbs. A larger ganglion in the head is all that this basic creature can display as a brain.

      Simple though it may be, the velvet worm functions perfectly well. For a moving animal, there is quite a short list of vital functions: sensory equipment to find a source of food and tools to help eat it; a method of locomotion; a way to breathe and distribute oxygen to internal organs; a system of waste disposal; a reliable way to propagate the species. Peripatus would be the kind of creature one might put together from a ‘how to make an animal’ kit, except that like almost everything else in nature it has some tricks all its own – its gluey trap, its ability to produce little peripati by live birth. It is a simple creature in many features, specialised in other subtle ways; but it is also another old timer, a messenger from the distant past.

      Its more recent history is not very different from that of the podocarp trees. Peripatus and its relatives number about two hundred living species (placed together in Phylum Onychophora, informally known as ‘onychophorans’).* They also have a distribution over the areas that once formed Gondwana: Australia, New Zealand, South Africa, South America and Assam (India). There are also velvet worms in Irian Jaya and New Guinea, where it is very likely that further species still remain to be discovered in mountainous and inaccessible areas. All of them carry the long memory of the vanished supercontinent as they tramp their unadventurous way on their stubby legs. Velvet worms had once wandered over Gondwana but, like the podocarps and southern beeches, new species arose on the separate pieces of the progressively fragmented continent; for evolution does not stand still. I could have gone in search of the velvet worm in any one of these other regions. The New Zealand species I happened to pursue is particularly interesting because it has developed a relationship with a special kind of termite that is regarded as the most primitive of its kind (of the Family Kalotermitidae), among which most individuals finish up as flying insects. The other termites are noted for their extraordinary caste system, with specialist workers СКАЧАТЬ