Искусственный интеллект – надежды и опасения. Сборник
Чтение книги онлайн.

Читать онлайн книгу Искусственный интеллект – надежды и опасения - Сборник страница 11

СКАЧАТЬ понимание и охотно пользуемся таким удобным подспорьем. Точно так же, утверждают некоторые, нужно просто применять системы глубинного обучения и создавать машинный интеллект, даже если мы не понимаем, как все это работает. Что ж, до определенной степени я могу согласиться с этим доводом. Лично мне непрозрачность не нравится, поэтому я не стану тратить свое время на глубинное обучение, но я знаю, что оно занимает некое место в структуре интеллекта. Я знаю, что непрозрачные системы способны творить настоящие чудеса, и наш мозг является тому убедительным доказательством.

      Но этот довод имеет свои ограничения. Причина, по которой мы прощаем себе наше скудное понимание принципов работы человеческого мозга, заключается в том, что у разных людей мозг работает одинаково, и это позволяет нам общаться с другими людьми, учиться у них, обучать их и мотивировать на нашем родном языке. Будь все наши роботы такими же непрозрачными, как AlphaGo[28], мы не сможем вести с ними содержательные беседы, что весьма печально. Нам придется переобучать их всякий раз, когда вносятся минимальные изменения в условия задачи или в операционную среду.

      Потому, оставляя в стороне эксперименты с «непрозрачными» обучаемыми машинами, я пытаюсь понять их теоретические ограничения и исследовать, каким образом эти ограничения могут быть преодолены. Я изучаю этот вопрос в контексте причинно-следственных задач, которые во многом определяют воззрения ученых на мир и в то же время изобилуют примерами проявления интуиции, вследствие чего мы можем отслеживать прогресс в ходе анализа. В данном контексте мы обнаружили, что существуют некоторые базовые препятствия, которые, если их не преодолеть, не позволят создать подлинный аналог человеческого разума, что бы мы ни делали. Полагаю, подробное описание этих препятствий не менее важно, чем попытки взять их штурмом.

      Современные системы машинного обучения работают почти исключительно в статистическом режиме (или режиме модельной слепоты), который во многом аналогичен помещению функции в облако элементов данных. Подобные системы не способны размышлять по принципу «что, если?», а значит, не могут выступать основанием для «сильного» ИИ, то есть для искусственного интеллекта, который имитирует человеческие мышление и компетентность. Чтобы достичь человеческой разумности, обучаемые машины должны руководствоваться своего рода калькой с реальности, моделью наподобие дорожной карты, по которой мы ориентируемся, перемещаясь по незнакомому городу.

      Точнее сказать, современные обучаемые машины улучшают свою производительность, оптимизируя параметры потока сенсорных входящих данных, получаемых из окружающей среды. Это небыстрый процесс, аналогичный естественному отбору, который движет дарвиновской эволюцией. Последняя объясняет, как такие виды, как орлы и змеи, обрели превосходное зрение за миллионы лет развития. Однако она не в состоянии объяснить сверхэволюционные процессы, которые позволили людям изобрести и СКАЧАТЬ



<p>28</p>

Компьютерная программа для игры в го, разработана в 2015 г.; получила дальнейшее развитие в программах AlphaGo Master, AlphaGo Zero и AlphaZero.