Автор: Антон Фуник
Издательство: Южный Федеральный Университет
Жанр: Учебная литература
isbn: 9785927524150
isbn:
Спектры рентгеновского поглощения отражают распределение электронной плотности свободных состояний в зоне проводимости. Коэффициент поглощения определяется формулой
где суммирование производится по всем возможным конечным состояниям f, Мif – матричный элемент вероятности перехода, зависящий от взаимного расположения соседних атомов и включающий радиальные многочастичные волновые функции начального Ψi и конечного Ψf состояний. Его можно разделить на низкоэнергетическую и высокоэнергетическую области (рис. 6), различающиеся между собой физическими механизмами формирования тонкой структуры: флуктуации коэффициента поглощения рентгеновского излучения в области, близкой к краю поглощения со стороны высоких энергий (международный термин XANES – X-ray Absorption Near Edge Structure ) либо в околокраевой области (NEXAFS – Near Edge X-ray Absorption Fine Structure) и протяженную осцилляционную структуру, продолжающуюся обычно до 1 кэВ выше края поглощения (EXAFS – Extended X-ray Absorption Fine Structure).
Рис. 6. Области XANES и EXAFS рентгеновского спектра поглощения
Различия NEXAFS и XANES состоит, как правило, в энергии используемого рентгеновского излучения. В случае экспериментов с применением рентгеновского излучения высокой энергии (жесткий рентген), говорят о XANES спектроскопии, в случае использования мягкого рентгеновского излучения – о NEXAFS спектроскопии. Формирование XANES области обусловлено рассеянием фотоэлектронов с длиной волны порядка межатонмных расстояний, тогда как область EXAFS формируется в результате рассеяния электронов с более короткой длиной волны. Так как в монографии представлены результаты исследований, где основным методом диагностики выступала XANES спектроскопия, мы не будем рассматривать особенности формирования и интерпретации области EXAFS.
Формирование области XANES происходит в результате рассеяния фотоэлектронов на соседних поглощающему атомах материала. Обладая большой длиной свободного пробега, фотоэлектроны многократно рассеиваются и в процесс рассеяния вовлекаются атомы не только первой координационной сферы. Явление многократного рассеяния связывает, таким образом, ближнюю область спектра поглощения не только с расстояниями соседних атомов, но и с симметрией окружения, делая тем самым XANES спектр чувствительным даже к незначительным изменениям в структуре вещества. За счет большого вклада многократного рассеяния в формирование XANES спектра их интерпретация позволяет получить данные не только о структурных, но и электронных характеристиках исследуемого материала. СКАЧАТЬ