Название: Машина, платформа, толпа. Наше цифровое будущее
Автор: Эрик Бриньолфсон
Издательство: Манн, Иванов и Фербер (МИФ)
Жанр: Прочая образовательная литература
isbn: 978-5-00117-661-9
isbn:
Несмотря на убедительные примеры, нам стоит перестать петь дифирамбы алгоритмам и сделать несколько важных оговорок. Прежде всего, чтобы сравнивать человеческое суждение с его математической моделью, нужно иметь такую модель. Согласно парадоксу Полани, это не всегда возможно. Модели нужно тестировать и оттачивать на многочисленных сходных примерах, поскольку каждая из них описывает только какое-то подмножество решений, которые могут принимать люди. Впрочем, общая идея ясна и подтверждается раз за разом: если грамотно создать и испытать модель, то в целом она будет работать так же хорошо, как эксперты, принимающие аналогичные решения (или даже лучше). Тем не менее мы продолжаем опираться на человеческие суждения там, где лучше справляются машины.
Человеческий ум: гениальный, но склонный к ошибкам
Как может компьютер, опирающийся только на Систему 2, то есть на вычисления, производимые с числовыми данными, быть явно лучше, чем человек, который пользуется Системой 2 и Системой 1 – глубинными, врожденными, инстинктивно используемыми возможностями мышления, которые есть у всех нас? В конце концов, Система 1 работает довольно давно, она помогла нам выжить и благополучно провела через все препятствия эволюции (ведь мы все еще существуем, и нас уже 7,5 миллиарда[117]). Как она могла нас так подвести?!
Это слишком большой вопрос для одной книги, тем более для одной главы. Но в своей работе «Думай медленно… решай быстро» Канеман дал краткую сводку множества исследований (многие из которых провел сам):
Поскольку Система 1 работает автоматически и не может быть отключена по желанию, ошибки интуитивного мышления трудно предотвратить. Предубеждений не всегда можно избежать, поскольку Система 2 может просто не знать об ошибке[118].
Если говорить коротко, то Система 1 очень хороша, но склонна к ошибкам. Она часто срезает углы, не любит долгих размышлений и удивительно часто сбивается. Исследователи, работавшие в области экономической психологии и поведенческой экономики (дисциплины, которую помогал создавать Канеман), выявили большое количество искажений Системы 1 и даже дали им названия. Полный их список навел бы на вас скуку и вогнал в депрессию; в посвященной этой теме книге Рольфа Добелли «Территория заблуждений»[119] 99 глав, а в «Списке когнитивных искажений»[120] в «Википедии» было 175 пунктов, когда мы заглядывали туда в последний раз. Бастер Бенсон, менеджер по продукции софтверной компании Slack, придумал, по нашему мнению, прекрасный способ сгруппировать эти искажения и удержать в голове все связанные с ними проблемы[121].
1. Информационная перегрузка – паршивая СКАЧАТЬ
116
Erik Brynjolfsson and Kristina McElheran, “Data in Action: Data-Driven Decision Making in US Manufacturing,” 2016, https://papers.ssrn.com/sol3/papers2.cfm?abstract_id=2722502. Более ранняя работа, где использовалась меньшая выборка, дала сходные результаты: Erik Brynjolfsson, Lorin M. Hitt, and Heekyung Hellen Kim, “Strength in Numbers: How Does Data-Driven Decision making Affect Firm Performance?” 2011, https://papers.ssrn.com/sol3/papers2.cfm?abstract_id=1819486.
117
Worldometers, “Current World Population,” по состоянию на 26 февраля 2017 года, http://www.worldometers.info/world-population.
118
Kahneman,
119
120
См. соответствующие статьи (на английском и русском языке соответственно): https://en.wikipedia.org/wiki/List_of_cognitive_biases и https://ru.wikipedia.org/wiki/Список_когнитивных_искажений.
121
Бенсон пришел к этой категоризации после изучения списка когнитивных искажений «Википедии» во время отпуска по уходу за ребенком. Он опубликовал свои мысли в блоге практических подсказок Better Humans (http://betterhumans.net). Это прекрасный пример идеи, рожденной сетевой толпой, феномен которой мы детально обсудим в части III этой книги.