Название: Mastering VMware vSphere 6
Автор: Marshall Nick
Издательство: John Wiley & Sons Limited
Жанр: Зарубежная образовательная литература
isbn: 9781118925164
isbn:
DRS isn’t limited to operating only at VM startup, though. DRS also manages the VM’s location while it is running. For example, let’s say three servers have been configured in an ESXi cluster with DRS enabled. When one of those servers begins to experience a high contention for CPU utilization, DRS detects that the cluster is imbalanced in its resource usage and uses an internal algorithm to determine which VM(s) should be moved in order to create the least imbalanced cluster. For every VM, DRS will simulate a migration to each host and the results will be compared. The migrations that create the least imbalanced cluster will be recommended or automatically performed, depending on the DRS configuration.
DRS performs these on-the-fly migrations without any downtime or loss of network connectivity to the VMs by leveraging vMotion, the live migration functionality I described earlier. This makes DRS extremely powerful because it allows clusters of ESXi hosts to dynamically rebalance their resource utilization based on the changing demands of the VMs running on that cluster.
Fewer Bigger Servers or More Smaller Servers?
Recall from Table 1.2 that VMware ESXi supports servers with up to 320 logical CPU cores and up to 6 TB of RAM. With vSphere DRS, though, you can combine multiple smaller servers for the purpose of managing aggregate capacity. This means that bigger, more powerful servers might not be better servers for virtualization projects. These larger servers, in general, are significantly more expensive than smaller servers, and using a greater number of smaller servers (often referred to as “scaling out”) may provide greater flexibility than a smaller number of larger servers (often referred to as “scaling up”). The key thing to remember is that a bigger server isn’t necessarily a better server.
vSphere Storage DRS
vSphere Storage DRS takes the idea of vSphere DRS and applies it to storage. Just as vSphere DRS helps to balance CPU and memory utilization across a cluster of ESXi hosts, Storage DRS helps balance storage capacity and storage performance across a cluster of datastores using mechanisms that echo those used by vSphere DRS.
Earlier I described vSphere DRS’s feature called intelligent placement, which automates the placement of new VMs based on resource usage within an ESXi cluster. In the same fashion, Storage DRS has an intelligent placement function that automates the placement of VM virtual disks based on storage utilization. Storage DRS does this through the use of datastore clusters. When you create a new VM, you simply point it to a datastore cluster, and Storage DRS automatically places the VM’s virtual disks on an appropriate datastore within that datastore cluster.
Likewise, just as vSphere DRS uses vMotion to balance resource utilization dynamically, Storage DRS uses Storage vMotion to rebalance storage utilization based on capacity and/or latency thresholds. Because Storage vMotion operations are typically much more resource intensive than vMotion operations, vSphere provides extensive controls over the thresholds, timing, and other guidelines that will trigger a Storage DRS automatic migration via Storage vMotion.
Storage I/O Control and Network I/O Control
VMware vSphere has always had extensive controls for modifying or controlling the allocation of CPU and memory resources to VMs. What vSphere didn’t have prior to the release of vSphere 4.1 was a way to apply these same sort of extensive controls to storage I/O and network I/O. Storage I/O Control and Network I/O Control address that shortcoming.
Storage I/O Control (SIOC) allows you to assign relative priority to storage I/O as well as assign storage I/O limits to VMs. These settings are enforced cluster-wide; when an ESXi host detects storage congestion through an increase of latency beyond a user-configured threshold, it will apply the settings configured for that VM. The result is that you can help the VMs that need priority access to storage resources get more of the resources they need. In vSphere 4.1, Storage I/O Control applied only to VMFS storage; vSphere 5 extended that functionality to NFS datastores.
The same goes for Network I/O Control (NIOC), which provides you with more granular controls over how VMs use network bandwidth provided by the physical NICs. As the widespread adoption of 10 Gigabit Ethernet (10GbE) continues, Network I/O Control provides you with a way to more reliably ensure that network bandwidth is properly allocated to VMs based on priority and limits.
Policy-Based Storage
With profile-driven storage, vSphere administrators can use storage capabilities and VM storage profiles to ensure VMs reside on storage that provides the necessary levels of capacity, performance, availability, and redundancy. Profile-driven storage is built on two key components:
• Storage capabilities, leveraging vSphere’s storage awareness APIs
• VM storage profiles
Storage capabilities are either provided by the storage array itself (if the array can use vSphere’s storage awareness APIs) and/or defined by a vSphere administrator. These storage capabilities represent various attributes of the storage solution.
VM storage profiles define the storage requirements for a VM and its virtual disks. You create VM storage profiles by selecting the storage capabilities that must be present for the VM to run. Datastores that have all the capabilities defined in the VM storage profile are compliant with the VM storage profile and represent possible locations where the VM could be stored.
This functionality gives you much greater visibility into storage capabilities and helps ensure that the appropriate functionality for each VM is indeed being provided by the underlying storage. These storage capabilities can be explored extensively by using VVOLs or VSAN.
Refer to Table 1.1 to find out which chapter discusses profile-driven storage in more detail.
vSphere High Availability
In many cases, high availability – or the lack of high availability – is the key argument used against virtualization. The most common form of this argument more or less sounds like this: “Before virtualization, the failure of a physical server affected only one application or workload. After virtualization, the failure of a physical server will affect many more applications or workloads running on that server at the same time. We can’t put all our eggs in one basket!”
VMware addresses this concern with another feature present in ESXi clusters called vSphere High Availability (HA). Once again, by nature of the naming conventions (clusters, high availability), many traditional Windows administrators will have preconceived notions about this feature. Those notions, however, are incorrect in that vSphere HA does not function like a high-availability configuration in Windows. The vSphere HA feature provides an automated process for restarting VMs that were running on an ESXi host at a time of server failure (or other qualifying infrastructure failure, as I’ll describe in Chapter 7, “Ensuring High Availability and Business Continuity”). Figure 1.3 depicts the VM migration that occurs when an ESXi host that is part of an HA-enabled cluster experiences failure.
Figure 1.3 The vSphere HA feature will restart any VMs that were previously running on an ESXi host that experiences server or storage path failure.
The vSphere HA feature, unlike DRS, does not use the vMotion technology as a means of migrating servers to another host. vMotion applies only to planned migrations, where both the source and destination ESXi host are running and functioning properly. In a vSphere HA failover situation, there is no anticipation of failure; it is not a planned outage, which means there is no time to perform a vMotion operation. СКАЧАТЬ