Mastering VMware vSphere 6. Marshall Nick
Чтение книги онлайн.

Читать онлайн книгу Mastering VMware vSphere 6 - Marshall Nick страница 10

СКАЧАТЬ 2011, the industry has seen tremendous uptake in the use of solid-state storage (also referred to as flash storage) across a wide variety of use cases. Because solid-state storage can provide massive numbers of I/O operations per second (IOPS) it can handle the increasing I/O demands of virtual workloads. However, solid-state storage is typically more expensive on a per-gigabyte basis than traditional, hard-disk-based storage and therefore is often deployed as a caching mechanism to help speed up frequently accessed data.

      Unfortunately, without support in vSphere for managing solid-state storage as a caching mechanism, vSphere architects and administrators have had difficulty fully leveraging solid-state storage in their environments. With the release of vSphere 5.5, VMware addresses that limitation through a feature called vSphere Flash Read Cache.

      vSphere Flash Read Cache brings full support for using solid-state storage as a caching mechanism to vSphere. Using this feature, you can assign solid-state caching space to VMs in much the same way as you assign CPU cores, RAM, or network connectivity to VMs. vSphere manages how the solid-state caching capacity is allocated and assigned as well as how it is used by the VMs.

      Hardware vendors that provide solid-state storage devices have partnered with VMware to make their products fully support vSphere Flash Read Cache.

      VMware vSphere Compared to Hyper-V and XenServer

      It’s not possible to compare some virtualization solutions to others because they are fundamentally different in approach and purpose. Such is the case with VMware ESXi and some of the other virtualization solutions on the market.

      To make accurate comparisons between vSphere and others, you must include only Type 1 (“bare-metal”) virtualization solutions. This would include ESXi, of course, Microsoft Hyper-V and Citrix XenServer. It would not include products such as VMware Server and Microsoft Virtual Server, both of which are Type 2 (“hosted”) virtualization products. Even within the Type 1 hypervisors, there are architectural differences that make direct comparisons difficult.

      For example, both Microsoft Hyper-V and Citrix XenServer route all the VM I/O through the “parent partition” or “dom0.” This typically provides greater hardware compatibility with a wider range of products. In the case of Hyper-V, for example, as soon as Windows Server 2012 – the general-purpose operating system running in the parent partition – supports a particular type of hardware, Hyper-V supports it also. Hyper-V “piggybacks” on Windows’ hardware drivers and the I/O stack. The same can be said for XenServer, although its “dom0” runs Linux and not Windows.

      VMware ESXi, on the other hand, handles I/O within the hypervisor itself. This typically provides greater throughput and lower overhead at the expense of slightly more limited hardware compatibility. To add more hardware support or updated drivers, the hypervisor must be updated because the I/O stack and device drivers are in the hypervisor.

      This architectural difference is fundamental, and nowhere is it more greatly demonstrated than in ESXi, which has a small footprint yet provides a full-featured virtualization solution. Both Citrix XenServer and Microsoft Hyper-V require a full installation of a general-purpose operating system (Windows Server 2012 for Hyper-V, Linux for XenServer) in the parent partition/dom0 in order to operate.

      In the end, each of the virtualization products has its own set of advantages and disadvantages, and large organizations may end up using multiple products. For example, VMware vSphere might be best suited in the large corporate datacenter, whereas Microsoft Hyper-V or Citrix XenServer might be acceptable for test, development, or branch office deployment. Organizations that don’t require VMware vSphere’s advanced features like vSphere DRS, vSphere FT, or Storage vMotion may also find that Microsoft Hyper-V or Citrix XenServer is a better fit for their needs.

      As you can see, VMware vSphere offers some pretty powerful features that will change the way you view the resources in your datacenter. vSphere also has a wide range of features and functionality. Some of these features, though, might not be applicable to all organizations, which is why VMware has crafted a flexible licensing scheme for organizations of all sizes.

      Licensing VMware vSphere

      Beginning with VMware vSphere 4, VMware made available new licensing tiers and bundles intended to provide a good fit for every market segment. That arrangement continued with vSphere 5.0. However, with vSphere 5.1 (and continuing with vSphere 6.0), VMware refined this licensing arrangement with the vCloud Suite – a bundling of products including vSphere, vRealize Automation, vCenter Site Recovery Manager, and vRealize Operations Management Suite.

      Although licensing vSphere via the vCloud Suite is likely the preferred way of licensing vSphere moving forward, discussing all the other products included in the vCloud Suite is beyond the scope of this book. Instead, I’ll focus on vSphere and explain how the various features discussed so far fit into vSphere’s licensing model when vSphere is licensed stand-alone.

      Vsphere or Vsphere With Operations Management?

      VMware sells “standalone” vSphere in one of two ways: as vSphere, with all the various kits and editions, and as vSphere with Operations Management. vSphere with Operations Management is the same as vSphere but adds the vRealize Operations Management product. In this section, we are focused on standalone vSphere only, but keep in mind that vSphere with Operations Management would be licensed and packaged in much the same way.

      You’ve already seen how VMware packages and licenses VMware vCenter Server, but here’s a quick review:

      • VMware vCenter Server for Essentials, which is bundled with the vSphere Essentials kits (more on the kits in just a moment).

      • VMware vCenter Server Standard, which includes all functionality and does not have a preset limit on the number of vSphere hosts it can manage (although normal sizing limits do apply). vRealize Orchestrator is included only in the Standard edition of vCenter Server.

      In addition to the two editions of vCenter Server, VMware offers three editions of VMware vSphere:

      • vSphere Standard Edition

      • vSphere Enterprise Edition

      • vSphere Enterprise Plus Edition

      No More vRAM and No vCPU Limits

      If you’ve been around the VMware vSphere world for a while, you might recall that VMware introduced the idea of vRAM – the amount of RAM configured for a VM – as a licensing constraint with the release of vSphere 5.0. As of vSphere 5.1, and continuing into vSphere 6.0, VMware no longer uses vRAM entitlements as a licensing mechanism. VMware has removed any licensing limits on the number of vCPUs that can be assigned to a VM.

      These three editions are differentiated primarily by the features each edition supports, although there are some capacity limitations with the different editions. Notably missing from the licensing for vSphere 6.0 are limits on vRAM (see the sidebar “No More vRAM and No vCPU Limits”).

Table 1.3 summarizes the features that are supported for each edition of VMware vSphere 6.0.

Table 1.3 Overview of VMware vSphere product editions

      Source: “VMware vSphere 6.0 Licensing, Pricing and Packaging” white paper published by VMware, available at www.vmware.com.

      It’s important to note that all editions of VMware vSphere 6.0 include support for thin provisioning, vSphere Update СКАЧАТЬ