Как было на самом деле. Каждая история желает быть рассказанной. Анатолий Фоменко
Чтение книги онлайн.

Читать онлайн книгу Как было на самом деле. Каждая история желает быть рассказанной - Анатолий Фоменко страница 51

СКАЧАТЬ target="_blank" rel="nofollow" href="#i_142.jpg"/>

      Рис. 3.42. Пример сложной минимальной поверхности, ограниченной достаточно сложным контуром.

      Оказывается, минимальные поверхности широко распространены в природе. Например, как наиболее экономные поверхности, формирующие скелеты некоторых живых организмов. Весьма эффектный пример особенностей минимальных поверхностей дают скелеты радиолярий, микроскопических морских животных, имеющих самые разнообразные и экзотические формы. Радиолярии состоят из небольших комочков протоплазмы, заключенных в пенообразные формы, наподобие мыльных пузырей и пленок. Минимальные поверхности, образующиеся в радиоляриях, имеют много особых точек и ребер ветвления, на которых и концентрируется основная масса жидкости, входящей в состав организма.

      Здесь жидкость тормозится и оседает, образуя «водяные отрезки». Концентрация жидкости вдоль ребер ветвления приводит к тому, что твердые фракции морской воды и соли оседают вдоль этих ребер и постепенно образуют твердый скелет животного. После его гибели мягкие ткани распадаются и остается твердый скелет. На рис. 3.43 показано несколько скелетов радиолярий.

      Рис. 3.43. Скелеты радиолярий, наглядно показывающие структуру ребер и точек ветвления минимальных поверхностей.

      Примерами минимальных поверхностей могут служить хорошо известные мембраны – это и барабанная перепонка в нашем ухе; это мембраны, служащие границами живых клеток и т. п. В 30-е и 40-е годы XX века был достигнут большой прогресс в изучении свойств двумерных минимальных поверхностей в трехмерном пространстве. Обычно «проблема Плато» формулируется так: верно ли, что на любой замкнутый контур можно натянуть минимальную поверхность? И если «да», то – сколько таких поверхностей, и каковы их топологические свойства? С математической точки зрения это весьма непростая проблема.

      Замечательные результаты в этом направлении были получены в первой половине XX века Дугласом, Радо, Курантом и др. В частности, была доказана фундаментальная теорема, утверждающая, что для любого достаточно хорошего одномерного контура (то есть, замкнутой кривой) всегда существует минимальная поверхность в трехмерном пространстве, затягивающая этот контур, причем ее площадь не превышает площади любой другой поверхности, затягивающей этот же контур.

      После решения проблемы Плато для контуров в трехмерном пространстве математики перешли к «многомерной проблеме Плато». То есть вместо одномерного контура теперь рассматриваются «многомерные контуры» – замкнутые многообразия (компактные поверхности без края).

      Проблема звучит так: на любой ли «многомерный контур» можно натянуть минимальную поверхность (на единицу большей размерности) наименьшей возможной площади (объема)? Эта многомерная задача связана с многочисленными приложениями как в математике, так и в механике, математической физике. Многомерная проблема оказалась чрезвычайно трудной. Начиная с 60-х годов XX века в этой области произошел существенный скачок, связанный с такими именами, как: СКАЧАТЬ