Название: Как было на самом деле. Каждая история желает быть рассказанной
Автор: Анатолий Фоменко
Издательство: АСТ
Жанр: Биографии и Мемуары
isbn: 978-5-17-096292-1
isbn:
И все мы прекрасно понимаем, что работа диссертанта – это большой шаг вперед, сделанный в науке математике, и что автор ее не только достоин степени доктора, но он достоин еще гораздо более высокого звания, звания настоящего математика, настоящего ученого и настоящего представителя своей науки. Вот то впечатление, которое я вынес от этой защиты и которым хотел поделиться с вами, членами Ученого Совета». (Конец цитаты).
Теперь вкратце и наглядно объясню – что такое «проблема Плато», и что, собственно говоря, мне удалось сделать. Когда бельгийский физик Жозеф Плато в XIX веке начал опыты по изучению конфигурации мыльных пленок, он вряд ли предполагал, что они послужат толчком к развитию целого научного направления, бурно развивающегося до настоящего времени и известного под названием «проблема Плато». Опыты Плато хорошо знакомы нам с детства – это выдувание мыльных пузырей или конструирование мыльных пленок, затягивающих проволочный контур.
Берем гибкую тонкую проволоку, туалетное мыло и миску воды. Растворяем мыло в теплой воде, добавляем ложку глицерина. Из проволоки делаем замкнутый контур с ручкой. Опускаем его в мыльный раствор и осторожно вынимаем. На нем повисает красивая радужная мыльная пленка, ограниченная этим контуром. Замысловато изгибая контур, можно получать самые разнообразные формы пленок. Физический принцип, лежащий в основе возникновения мыльных пленок, достаточно прост: физическая система сохраняет свою конфигурацию только в том случае, когда она не может легко изменить ее, заняв положение с меньшим значением энергии. Энергия мыльной пленки пропорциональна ее площади. Поэтому жидкая пленка превращается в эластичную поверхность, стремящуюся минимизировать свою площадь, и, следовательно, минимизировать энергию натяжения, приходящуюся на единицу площади. Минимальные поверхности встречаются в живой природе и физике как поверхности раздела двух сред с одинаковым давлением, находящихся в равновесии.
Таким образом, математической моделью мыльной пленки служит гладкая (или кусочно-гладкая) поверхность минимальной площади, затягивающая данный контур, рис. 3.38. Математики называют ее минимальной поверхностью. Такие поверхности являются математическим объектом, достаточно хорошо моделирующим физические мыльные пленки. Математическая СКАЧАТЬ