Название: Ритм Вселенной. Как из хаоса возникает порядок
Автор: Стивен Строгац
Издательство: Манн, Иванов и Фербер
Жанр: Физика
isbn: 978-5-00100-388-5
isbn:
Та же аргументация относится к любому другому количеству осцилляторов – с той небольшой поправкой, что в случае четырех или большего количества осцилляторов площадь нужно заменить на объем или гиперобъем. В любом случае вероятность начать процесс с плохой точки всегда остается равной нулю. Следовательно, Пескин был прав: в его модели идентичных импульсно-связанных осцилляторов каждый из осцилляторов в конечном счете запускается в унисон с остальными.
Конструируя это доказательство, мы пришли к выводу, что предположение Пескина об утечках было очень важным: в противном случае преобразование из «до» в «после» не расширяет площадь и все доказательство разваливается. Более того, оно должно развалиться, поскольку наша теорема без такого предположения недействительна. Если кривая заряда загибалась вверх, а не вниз – если напряжение растет все быстрее по мере приближения к пороговому значению, – то наше моделирование показывало, что рассматриваемая популяция осцилляторов вовсе не обязательно синхронизируется. Осцилляторы могут зациклиться в случайной картине хаотических запусков.
Этот тонкий момент зачастую ставил в тупик других математиков, когда я читал свои первые лекции по нашей работе: прежде чем я успевал дать развернутое пояснение этого момента, какой-нибудь критикан (а среди слушателей обязательно находился хотя бы один такой) прерывал меня и упрекал в тривиальности нашей теоремы: дескать, осцилляторы, конечно же, синхронизируются, поскольку все они идентичны и одинаково связаны друг с другом – а на какой же еще результат я рассчитывал? Но такое возражение слишком обманчиво: оно игнорирует слабое влияние кривой заряда. Синхронизм возникает с неизбежностью лишь в случае, когда эта кривая изгибается в «правильном» направлении. С биологической точки зрения, форма кривой заряда определяет, в какой момент толчки оказываются более сильными: в начале цикла (вблизи исходного состояния) или в конце цикла (вблизи порогового значения). Когда кривая заряда наклонена вниз, как в модели Пескина, данный толчок напряжения трансформируется в больший сдвиг фазы для осцилляторов, близких к пороговому значению, что в свою очередь гарантирует, что система будет синхронизирована, хотя понять, почему именно она будет синхронизирована, не так-то просто.
Сконструированное нами доказательство выводов, сделанных Пескином, оказалось первым строгим результатом, относящимся к популяции осцилляторов, обменивающихся внезапными импульсами. Что же касается реальных светлячков или клеток-ритмоводителей сердца, такая модель является очевидным упрощением. Она СКАЧАТЬ