Название: Дискретная математика. Краткий курс. Учебное пособие
Автор: Александр Анатольевич Казанский
Издательство: Проспект
Жанр: Математика
isbn: 9785392196043
isbn:
Пусть А, В и С подмножество универсального множества U. Рассмотрим любой элемент х ∈ ВС. По определению дополнения ВС ∩ В = Ø, поэтому если х является элементом ВС, то он не может быть элементом В, т. е. х ∉ В. Элемент х также не может принадлежать и множеству А, поскольку А ⊆ В, т. е. х ∉ А, но тогда х ∈ АС. Таким образом, показано, что для любого элемента х из множества ВС этот элемент принадлежит и множеству АС, т. е. ВС ⊆ АС.
1.24. Доказать, используя элементный метод, что если А ⊆ В, то
(a) А ∩ С ⊆ В ∩ С,
(b) А ∪ С ⊆ В ∪ С.
(a) Пусть х ∈ А ∩ С. Тогда х ∈ А и х ∈ С и поскольку А ⊆ В, то х ∈ В. Из того, что х принадлежит и В и С, следует, что он принадлежит их пересечению х ∈ В ∩ С. Это означает, что для любого х, входящего в множество А ∩ С, элемент х входит и в множество В ∩ С, т. е. А ∩ С ⊆ В ∩ С.
(b) Поскольку А ⊆ В, то ВС ⊆ АС (задача 1.23). Тогда для любого множества СС его пересечение с ВС будет включаться в его пересечением с АС (потому что нет ни одного элемента ВС, входящего в пересечение ВС ∩ СС и не являющегося элементам АС, но ВС ∩ СС могут быть элементы из АС, не являющиеся элементами ВС), т. е. ВС ∩ СС ⊆ АС ∩ СС. Затем, снова применяя результат задачи 1.23, получим, что (АС ∩ СС)С ⊆ (ВС ∩ СС)С. По закону де Моргана получим А ∪ С ⊆ В ∪ С, что и доказывает искомый результат.
1.25. Дано множество А = {1,2, 3, 4, 5, 6, 7, 8,9}. Какие из приведенных ниже семейств множеств являются разбиениями:
(a) {{1, 2, 3}, {2, 4, 5}, {6, 9}, {7, 8}},
(b) {{1, 3, 5}, { 7, 6}, {2, 4, 8, 9}},
(c) {{1, 2}, {3, 5, 6, 7}, {4, 8, 9}, {1, 2}},
(d) {{1, 2}, {3, 4, 5}, {7, 8}, {9}}.
(a) Не разбиение, потому что элемент 2 входит в {1, 2, 3} и {2, 4, 5}.
(b) Разбиение, потому что каждый элемент А принадлежит точно одному блоку.
(c) Разбиение, потому что можно игнорировать факт, что {1, 2} встречается дважды.
(d) Не разбиение, потому что нет элемента 6.
1.26. Пусть А и В непересекающиеся множества. Обозначим через Sa разбиение множества А, а через Sb – разбиение множества В. Доказать, что Sa ∪ Sb является разбиением множества А ∪ В.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.