Название: Раневой процесс: нанобиотехнологии оптимизации
Автор: Коллектив авторов
Издательство: ""Издательство ""СпецЛит""
Жанр: Медицина
isbn: 978-5-299-00509-7
isbn:
Использование в лечебных целях антиоксидантов стабилизирует собственную многокомпонентную систему антиоксидантной защиты и тормозит развитие свободнорадикального перекисного окисления липидов, клеточных и капиллярных мембран, предотвращая повреждение клеток и тканей, ограничивая распространение воспалительных изменений и вторичного некроза тканей (Тюнин М. А., 2009). При этом значительно усиливается фагоцитарная активность макрофагов и повышается неспецифический иммунитет (Берченко Г. Н., 1997; Толстых М. П., 2002). Применение антиоксидантов при лечении огнестрельных ран через 1 ч после ранения уменьшает количество иссекаемых тканей при первичной хирургической обработке в 1,3 – 1,85 раза (Шальнев А. Н., 1996).
Расширение ассортимента антиоксидантов, в первую очередь на основе наноматериалов, и их дальнейшее применение при лечении воспалительного процесса, по нашему мнению, должно способствовать предотвращению развития осложнений и скорейшему заживлению ран.
В связи с этим особый интерес представляют отмеченные ранее фуллерены (Kotelnikova R. A., 1998). До открытия фуллеренов считали, что углерод образует три аллотропные формы: алмаз, графит и карбин. Фуллерены принципиально отличаются от них тем, что представляют собой новую форму углерода не только по структуре (алмаз, графит, карбин – бесконечные системы, а фуллерены – семейство индивидуальных полиэдрических молекул), но и по существу, так как его молекула содержит фрагменты с пятикратной симметрией (пентагоны), которая не характерна для неорганических соединений (рис. 3). О высоком потенциале использования фуллеренов в медицине и биологии ученые заговорили практически с момента их открытия. В настоящее время установлено, что фуллерены, обладая антиоксидантной (Wang I. C., 1999), нейропротективной (Dugan L. L., 1997; 2001), мембранотропной (Андреев И. М., 2002; Kotelnikova R. A., 1998), противовирусной (Меджидова М. Г., 2004; Lin Y. L., 2000), антибластомной (Yang X. L., 2002), антимикробной (Tsao N., 2002) и фотодинамической активностью (Kasermann F., 1998; Vileno B., 2004), являются перспективным материалом для создания новых высокотехнологичных медицинских материалов и лекарственных препаратов фуллерена С60 (Пиотровский Л. Б., 2006). Фуллерены были обнаружены в том числе и в шунгитовых породах (Рожков С. П., 2007; Рожкова Н. Н., 2007), углерод из которых нашел применение в различных отраслях медицины (Панов П. Б., 2007; Шаповалов С. Г., 2005).
Рис. 3. Геометрическая структура фуллерена С60
При проявлении фуллереном биологических свойств важнейшую роль играет форма его молекулы, т. е. способность выступать в качестве лиганда в комплементарном взаимодействии с биологической мишенью. Наиболее известным примером такого действия служат фуллеренсодержащие ингибиторы протеаз вируса СПИДа (HIV). Доказана возможность фуллерена встраиваться в структуру фермента и блокировать его действие (Friedman S. H., 1993; Sijbesma R., 1993), обуславливая выраженную противовирусную активность. Помимо протеаз вируса СПИДа, в литературе сообщается об аналогичном действии производных фуллерена на сериновые протеазы (трипсин, СКАЧАТЬ