Название: Информатика и ИТ. Нейросети. Выпуск 2
Автор: Николай Морозов
Издательство: Издательские решения
isbn: 9785006483118
isbn:
Набор цифр, из которых будет состоять двоичное число, очень мал – это 0 и 1. Восьмеричная система счисления имеет восемь цифр (0 – 7), шестнадцатеричная система имеет шестнадцать, причем первые десять цифр совпадают по написанию с цифрами десятичной системы счисления, а для обозначения оставшихся шести цифр применяются латинские буквы.
Так как из контекста не всегда понятно, к какой системе счисления относится запись, то основание недесятичной системы счисления записывается в виде нижнего индекса числа:
1112 =7 (10) 1118 =73 (10) 11116 =273 (10)
Запись чисел в десятичной, двоичной, восьмеричной и шестнадцатеричной системах счисления представлены в таблице кодирования.
Таблица 2.1.Таблица кодирования
Одинаковый принцип формирования чисел в позиционных системах счисления позволяет использовать алгоритм перевода из одной системы счисления в другую.
Правила перевода чисел из одной системы счисления в другую
Правила перевода числа произвольной системы счисления в десятичную систему счисления:
– Проставить номера позиций цифр в числе (начиная от запятой влево и вправо);
– Каждую цифру числа умножить на основание системы счисления в степени соответствующей номеру позиции;
– Перевести значения цифр в десятичные (для 16-ричных чисел, для систем счисления с основаниями 2 и 8 не требуется);
– Вычислить сумму полинома.
Рассмотрим пример использования данного алгоритма для числа FB,0C16
Пример использования данного алгоритма для числа FB,0C16
FB,0C16 = F·161 + B·160 +0·16—1 +C·8—2=
= 15·161 +11·160 +0·16—1 +13·8—2=
= 251.468
Итак, FB,0C16 = 251.468
Правила перевода десятичного числа в иную систему счисления
– Целую часть числа последовательно делить нацело на основание системы счисления. «Собрать» остатки от деления, начиная с остатка от последнего.
– Дробную часть числа последовательно умножать на основание системы счисления, «сдвигая» целую часть произведений и продолжая умножение только дробной части, до заданной точности. «Собрать» целые части произведений, начиная с первого.
– При переводе в шестнадцатеричную систему счисления перевести значения результирующих цифр в шестнадцатеричные.
– Записать число (целую и дробную часть) и указать систему счисления.
Рассмотрим пример использования данного алгоритма для перевода числа 3338,78 в шестнадцатеричную систему счисления с точностью до четырех знаков после запятой
Пример использования данного алгоритма для СКАЧАТЬ