inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if (i+1) % 100 == 0:
print(f'Epoch {epoch+1}, Iteration {i+1}, Loss: {running_loss/100:.4f}')
running_loss = 0.0
print('Finished Training')
# Сохранение модели
torch.save(model.state_dict(), 'mnist_model.pth')
```
Этот код создает и обучает простую полносвязную нейронную сеть для классификации изображений MNIST. В ней используются три полносвязных слоя, функции активации ReLU и функция потерь CrossEntropyLoss. Модель обучается в течение нескольких эпох с использованием оптимизатора Adam. По завершении обучения модель сохраняется в файл ‘mnist_model.pth'.
Функции активации
Функции активации играют важную роль в работе нейронных сетей, добавляя нелинейность в модель и позволяя ей учить сложные зависимости в данных. Вот более подробное описание основных функций активации:
1. ReLU (Rectified Linear Unit): Это одна из самых популярных функций активации, которая заменяет все отрицательные значения на ноль, оставляя положительные значения без изменений. Это делает вычисления проще и ускоряет обучение модели. ReLU также помогает в предотвращении проблемы затухания градиента.
Пример использования ReLU в нейронной сети может быть следующим:
Допустим, у нас есть простая нейронная сеть для классификации изображений рукописных цифр. В этой сети мы можем использовать ReLU в качестве функции активации для скрытых слоев. Вот как это может выглядеть на практике:
```python
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets as datasets
# Загрузка данных MNIST и предобработка
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
train_set = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True)
# Определение архитектуры нейронной сети с ReLU в скрытых слоях
class SimpleNN(nn.Module):
def __init__(self):
super(SimpleNN, self).__init__()
self.fc1 = nn.Linear(28*28, 128)
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, 10)
self.relu = nn.ReLU()
def forward(self, x):
x = torch.flatten(x, 1)
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.fc3(x)
return x
# Создание экземпляра модели
model = SimpleNN()
# Обучение модели и применение ReLU в скрытых слоях
```
В этом примере мы создаем нейронную сеть с тремя полносвязными слоями. После каждого полносвязного слоя мы применяем ReLU в качестве функции активации, чтобы добавить нелинейность и ускорить обучение модели. В итоге, мы используем ReLU для предотвращения затухания градиента и улучшения производительности нашей нейронной сети.
2. Sigmoid: Sigmoid-функция сжимает выходные значения в диапазон от 0 до 1, что делает её полезной для задач бинарной классификации, где нужно получить вероятность принадлежности к одному из двух классов. Однако у неё есть проблема затухания градиента, особенно при глубоких сетях.
Пример использования Sigmoid в нейронной сети для задачи СКАЧАТЬ