Набор данных MNIST играет ключевую роль в обучении и оценке моделей машинного обучения, особенно в области обработки изображений и распознавания образов. Его относительная простота и ясность делают его популярным выбором для учебных и исследовательских проектов. Этот набор данных обеспечивает стандартную базу для сравнения производительности различных методов классификации и оценки точности моделей.
1. Инициализация весов: Перед началом обучения каждый весовой коэффициент инициализируется случайным образом, например, из распределения Гаусса с нулевым средним и небольшой дисперсией. Это делается для того, чтобы изначально модель была способна обучаться и исследовать пространство параметров.
2. Обучение сети: В процессе обучения сети каждый вес настраивается с использованием алгоритма обратного распространения ошибки. Нейронная сеть предсказывает класс каждой цифры на основе входных изображений, а затем сравнивает эти предсказания с фактическими метками изображений. По мере обратного прохода через сеть вычисляются градиенты функции потерь по отношению к каждому весу.
3. Обновление весов: Веса обновляются в направлении, обратном градиенту функции потерь. Это означает, что веса, которые вносят больший вклад в ошибку модели, будут корректироваться сильнее. Процесс обновления весов повторяется для каждого примера из обучающего набора данных и повторяется многократно в течение нескольких эпох, пока модель не достигнет приемлемого уровня точности на валидационном наборе данных.
4. Результаты обучения: После завершения обучения весовые коэффициенты нейронной сети становятся оптимизированными для данной задачи. Теперь модель может принимать новые, ранее не виденные данные и делать предсказания с высокой точностью, распознавая рукописные цифры с высокой точностью.
Этот пример демонстрирует, как весовые коэффициенты нейронной сети настраиваются в процессе обучения, чтобы модель могла делать точные предсказания на основе входных данных.
Пример кода на Python с использованием библиотеки PyTorch для создания и обучения простой нейронной сети для классификации изображений рукописных цифр из набора данных MNIST:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
# Загрузка данных MNIST и предобработка
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
train_set = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True)
# Определение архитектуры нейронной сети
class SimpleNN(nn.Module):
def __init__(self):
super(SimpleNN, self).__init__()
self.fc1 = nn.Linear(28*28, 128)
self.fc2 СКАЧАТЬ