2. Построение модели GAN
3. Обучение модели
4. Генерация изображений
1. Подготовка данных
Для начала нужно собрать и подготовить набор данных с изображениями ландшафтов. Используем набор данных, например, с сайта Kaggle, или загружаем собственные изображения.
```python
import os
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
from sklearn.model_selection import train_test_split
# Пусть 'landscapes' – это директория с изображениями
image_dir = 'path_to_landscape_images'
image_size = (128, 128) # Размер изображения для нейронной сети
def load_images(image_dir, image_size):
images = []
for filename in os.listdir(image_dir):
if filename.endswith(".jpg") or filename.endswith(".png"):
img_path = os.path.join(image_dir, filename)
img = Image.open(img_path).resize(image_size)
img = np.array(img)
images.append(img)
return np.array(images)
images = load_images(image_dir, image_size)
images = (images – 127.5) / 127.5 # Нормализация изображений в диапазон [-1, 1]
train_images, test_images = train_test_split(images, test_size=0.2)
```
2. Построение модели GAN
Генеративно-состязательная сеть состоит из двух частей: генератора и дискриминатора.
```python
import tensorflow as tf
from tensorflow.keras import layers
# Генератор
def build_generator():
model = tf.keras.Sequential()
model.add(layers.Dense(256, activation='relu', input_shape=(100,)))
model.add(layers.BatchNormalization())
model.add(layers.Dense(512, activation='relu'))
model.add(layers.BatchNormalization())
model.add(layers.Dense(1024, activation='relu'))
model.add(layers.BatchNormalization())
model.add(layers.Dense(np.prod(image_size) * 3, activation='tanh'))
model.add(layers.Reshape((image_size[0], image_size[1], 3)))
return model
# Дискриминатор
def build_discriminator():
model = tf.keras.Sequential()
model.add(layers.Flatten(input_shape=image_size + (3,)))
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(256, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
return model
# Сборка модели GAN
generator = build_generator()
discriminator = build_discriminator()
discriminator.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
gan_input = layers.Input(shape=(100,))
generated_image = generator(gan_input)
discriminator.trainable = False
gan_output = discriminator(generated_image)
gan = tf.keras.Model(gan_input, gan_output)
gan.compile(optimizer='adam', loss='binary_crossentropy')
```
3. Обучение модели
```python
import tensorflow as tf
# Гиперпараметры
epochs = 10000
batch_size = 64
sample_interval = 200
latent_dim = 100
# Генерация меток
real_labels = np.ones((batch_size, 1))
fake_labels = np.zeros((batch_size, 1))
for epoch in range(epochs):
# Обучение дискриминатора
idx = np.random.randint(0, train_images.shape[0], batch_size)
real_images = train_images[idx]
noise = np.random.normal(0, 1, (batch_size, latent_dim))
fake_images = generator.predict(noise)
d_loss_real = discriminator.train_on_batch(real_images, real_labels)
d_loss_fake = discriminator.train_on_batch(fake_images, fake_labels)
d_loss = 0.5 * np.add(d_loss_real, СКАЧАТЬ