Построение модели для обнаружения лиц в видео
1. Детектор лиц на основе CNN
Для начала нам нужно построить модель для обнаружения лиц в кадрах видео. Мы можем использовать предварительно обученную модель, такую как Single Shot MultiBox Detector (SSD) или You Only Look Once (YOLO), которые показывают хорошую производительность в реальном времени.
Пример архитектуры модели SSD для обнаружения лиц:
```python
import tensorflow as tf
from tensorflow.keras.applications import MobileNetV2
from tensorflow.keras.layers import Conv2D, Reshape
from tensorflow.keras.models import Model
# Загрузка предварительно обученной модели MobileNetV2 без полносвязных слоев
base_model = MobileNetV2(input_shape=(224, 224, 3), include_top=False, weights='imagenet')
# Замораживаем веса предварительно обученной модели
base_model.trainable = False
# Добавляем дополнительные слои для детекции лиц
x = base_model.output
x = Conv2D(256, (3, 3), activation='relu', padding='same')(x)
x = Conv2D(128, (3, 3), activation='relu', padding='same')(x)
predictions = Conv2D(4, (3, 3), activation='sigmoid', name='face_detection')(x) # 4 координаты bounding box'а
# Компилируем модель
model = Model(inputs=base_model.input, outputs=predictions)
# Вывод архитектуры модели
model.summary()
```
2. Отслеживание лиц в видео
После обнаружения лиц на каждом кадре видео необходимо отслеживать эти лица в последующих кадрах. Для этого можно использовать алгоритмы отслеживания объектов, такие как Kalman Filter или SORT (Simple Online and Realtime Tracking). В данном примере рассмотрим использование SORT для отслеживания лиц.
Пример использования SORT для отслеживания лиц:
```python
from sort import Sort # pip install sort
tracker = Sort()
# Пример получения bounding box'ов из модели детекции лиц
frames = [] # список кадров видео
# Для каждого кадра:
# Получаем bounding box'ы с помощью модели детекции лиц
# Передаём bounding box'ы в SORT для отслеживания
detections = model.predict(frame)
tracked_objects = tracker.update(detections)
# Отрисовываем tracked_objects на кадре видео
```
Пояснение архитектуры и процесса:
1. Детектор лиц на основе CNN: В примере используется MobileNetV2 как базовая модель без полносвязных слоев. Мы добавляем несколько свёрточных слоёв для улучшения точности детекции лиц. Финальный слой используется для предсказания bounding box'ов лиц на изображении.
2. Отслеживание лиц в видео: После детекции лиц на каждом кадре видео используется алгоритм отслеживания SORT для непрерывного отслеживания этих лиц на последующих кадрах. SORT осуществляет ассоциацию и отслеживание объектов на основе истории и предсказаний.
Преимущества использования такой модели
– Высокая СКАЧАТЬ