Название: Логика. Краткий курс
Автор: Юрий Васильевич Ивлев
Издательство: Проспект
isbn: 9785392233724
isbn:
Второй принцип – принцип однозначности. Согласно этому принципу выражение, используемое в деловом или научном языке в качестве имени, должно быть именем только одного предмета, если это единичное имя, а если это общее имя, то данное выражение должно быть именем, общим для предметов одного класса. Данный принцип не всегда соблюдается людьми с низкой логической культурой.
Еще одним видом дескриптивных терминов являются знаки предметных функций, или предметные функторы. Эти знаки выражают предметные функции.
Функцией называется соответствие, в силу которого объекты (предмет, пара, тройка предметов и т. д.) из некоторого множества, называемого областью определения функции, соотносятся с объектами из другого или того же самого множества, называемыми значениями функции. Всем известны математические (числовые) функции – сложение чисел, вычитание, умножение, деление. В логике понимание функции обобщается.
Предметной называется функция, значениями которой являются любые предметы. Примеры предметных функций: масса, трудовой стаж, размер среднемесячного дохода, отец, столица. Применив функциональный знак «масса» к единичному имени «Земля», получим в качестве значения единичное имя «масса Земли», обозначающее определенную величину, т. е. предмет. Таким образом, данная функция сопоставляет предметы (материальные объекты, обладающие массой) с другими предметами (величинами массы). Областью определения функции «трудовой стаж» является множество людей. Областью значений – множество именованных чисел (множество лет работы). Применив эту функцию к человеку, например, к Петрову, получим именованное число, например, 20 лет. Областью определения функции «отец» является множество людей. Применив эту функцию, например, к Сократу, в качестве значения получим определенного человека.
Некоторые логические термины тоже понимаются как функции. Это уже функции другого типа – логические функции. Например, логический термин «неверно, что» (отрицание) рассматривается как функция, сопоставляющая истинное предложение с ложным, а ложное с истинным. Применив отрицание к истинному предложению «На Земле есть жизнь», получим ложное предложение «Неверно, что на Земле есть жизнь». Применив отрицание к ложному предложению «Москва – большая деревня», получим истинное предложение «Неверно, что Москва – большая деревня».
Способы разъяснения выражений
Выше было сказано, что выражения «и», «или», «если…, то…», отрицание «неверно, что» («не»), слова, характеризующие количество предметов, о которых нечто утверждается или отрицается: «все» («ни один»), «некоторые», связка «суть» («есть»), слово «следовательно» и другие – еще не логические термины. Чтобы они стали логическими терминами, их нужно уточнить (разъяснить). То же самое относится к выражениям нелогическим. Чаще всего они требуют уточнения. Известно несколько приемов разъяснения выражений: СКАЧАТЬ