Выводит список установленных пакетов с их версиями.
Фильтрует этот список, исключая пакеты в режиме редактирования.
Извлекает только имена пакетов (без версий).
Для каждого пакета выполняет команду `pip install -U`, обновляя его до последней версии.
3. Удаление библиотеки: Чтобы удалить установленную библиотеку, используйте команду:
```bash
pip uninstall library_name
``` Это удалит библиотеку с вашей системы.
Управление библиотеками с помощью pip обеспечивает простой и эффективный способ установки, обновления и удаления библиотек в Python-проектах. Это важное звено в инструментарии разработчика, упрощающее поддержку и развитие проектов.
Python предоставляет обширную библиотечную экосистему, охватывающую различные области программирования. В зависимости от предназначения, библиотеки могут быть категоризованы по разным областям. Рассмотрим несколько основных категорий библиотек и их направления.
Библиотеки для работы с графиками и визуализации данных
Matplotlib: Одна из самых популярных библиотек для создания статических, интерактивных графиков и диаграмм. Matplotlib предоставляет множество возможностей для настройки внешнего вида графиков и диаграмм.
Seaborn: Построенная на Matplotlib, Seaborn предоставляет высокоуровневый интерфейс для создания красочных статистических графиков. Особенно полезна для визуализации данных в рамках анализа данных.
Plotly: Библиотека, которая предоставляет возможности для создания интерактивных графиков и визуализации данных. Поддерживает широкий спектр видов графиков.
Библиотеки для обработки данных
Pandas: Эффективная библиотека для работы с данными в табличной форме. Предоставляет высокоуровневые структуры данных, такие как DataFrame, и множество функций для манипуляции и анализа данных
NumPy: Основная библиотека для выполнения математических операций с многомерными массивами и матрицами. Широко используется в научных вычислениях и обработке данных.
SciPy: Построенная на NumPy, SciPy расширяет его функциональность, предоставляя дополнительные инструменты для оптимизации, статистики, интеграции и других задач.
Библиотеки для машинного обучения и искусственного интеллекта
Scikit-learn: Мощная библиотека для машинного обучения, содержащая инструменты для классификации, регрессии, кластеризации и других задач. Обладает простым и единообразным интерфейсом.
TensorFlow: Одна из ведущих библиотек для создания и обучения моделей глубокого обучения. Поддерживает широкий спектр архитектур нейронных сетей.
PyTorch: Библиотека глубокого обучения, предоставляющая динамические вычислительные графы. Используется для исследовательских задач и разработки новых алгоритмов.
Библиотеки для веб-разработки
Django: СКАЧАТЬ