В этом примере:
– `r` перед строкой означает "сырую строку" в Python, что позволяет использовать символы обратного слеша без экранирования.
– Заголовок, метки осей и легенда содержат математическое выражение в формате LaTeX.
В результате выполнения этого кода, вы увидите график функции синуса, а все текстовые элементы, содержащие математические выражения, будут отображены с использованием LaTeX.
Matplotlib поддерживает широкий спектр математических символов и выражений, так что вы можете свободно вставлять формулы в ваши графики, делая их более информативными и профессиональными.
Рассмотрим пример более сложной надписи LaTeX и графика:
```python
import numpy as np
import matplotlib.pyplot as plt
# Создание данных для примера
x = np.linspace(0, 2 * np.pi, 100)
y1 = np.sin(x)
y2 = np.cos(x)
# Использование LaTeX для формулы в подписи
expression = r'$f(x) = \sin(x) + \frac{\cos(2x)}{2}$'
# Построение графика
plt.figure(figsize=(8, 5))
plt.plot(x, y1, label=r'$\sin(x)$', color='blue')
plt.plot(x, y2/2, label=r'$\frac{\cos(2x)}{2}$', color='green', linestyle='–')
# Добавление более сложной LaTeX-надписи
plt.title(f'Комбинированный график: {expression}', fontsize=16)
# Добавление легенды
plt.legend()
# Отображение графика
plt.grid(True)
plt.show()
```
В этом примере:
– Мы создаем данные для двух функций (`sin(x)` и `cos(2x)/2`).
– LaTeX-формулы используются для подписей и заголовка графика.
– Каждая функция имеет свой цвет (синий и зеленый со строчной линией).
– В заголовке графика добавлена более сложная LaTeX-надпись, которая включает в себя сумму (`+`) и дробь (`\frac`).
Эти возможности делают Matplotlib мощным инструментом для визуализации данных в Python, позволяя создавать красочные, информативные и индивидуально настраиваемые графики.
`SciPy` – это библиотека для выполнения научных и инженерных расчётов в языке программирования Python. Она предоставляет множество функций для решения различных задач, таких как оптимизация, интегрирование, интерполяция, обработка сигналов, статистика и многое другое. В этом разделе мы рассмотрим подробнее различные аспекты библиотеки SciPy.
`SciPy` является важным инструментом в области оптимизации функций, и его методы находят применение в различных научных и инженерных областях. Методы оптимизации играют решающую роль в решении задач, связанных с поиском минимума или максимума функции, что является ключевым этапом в различных дисциплинах.
В области машинного обучения и статистики, методы оптимизации `SciPy` могут использоваться для настройки параметров моделей, максимизации правдоподобия или минимизации функций потерь. Это важно при обучении моделей, таких как линейная регрессия, метод опорных векторов, нейронные сети и другие.
В инженерии методы оптимизации применяются для решения задач проектирования, оптимизации параметров систем и управления, а также для минимизации энергопотребления в различных технических приложениях. СКАЧАТЬ