Атлас искусственного интеллекта: руководство для будущего. Кейт Кроуфорд
Чтение книги онлайн.

Читать онлайн книгу Атлас искусственного интеллекта: руководство для будущего - Кейт Кроуфорд страница 15

СКАЧАТЬ style="font-size:15px;">      В области ИИ стандартной практикой является максимизация вычислительных циклов для повышения производительности, в соответствии с убеждением, что больше – значит лучше. Как говорит Рич Саттон из DeepMind: «Методы, использующие вычисления, в конечном итоге являются наиболее эффективными, причем с большим отрывом»[95]. Вычислительная техника перебора при обучении ИИ или систематический сбор большего количества данных и использование большего количества вычислительных циклов до достижения лучшего результата, привела к резкому увеличению потребления энергии. По оценкам OpenAI, с 2012 года объем вычислений, используемых для обучения одной модели ИИ, ежегодно увеличивался в десять раз. Это связано с тем, что разработчики «постоянно находят способы использовать больше чипов параллельно и готовы платить за это экономические издержки»[96]. Мышление с точки зрения экономических издержек сужает взгляд на более широкую локальную и экологическую цену сжигания вычислительных циклов как способа создания дополнительной эффективности. Тенденция к «вычислительному максимализму» имеет глубокие экологические последствия.

      Центры обработки данных являются одними из крупнейших в мире потребителей электроэнергии[97]. Для питания этой многоуровневой машины требуется электроэнергия из сети в виде угля, газа, ядерной или возобновляемой энергии. Некоторые корпорации реагируют на растущую тревогу по поводу энергопотребления крупномасштабных вычислений: Apple и Google заявляют о своей углеродной нейтральности (это означает, что они компенсируют выбросы углерода путем покупки кредитов), а Microsoft обещает стать углеродно-нейтральной к 2030 году. Однако работники этих компаний настаивают на сокращении выбросов по всем направлениям, а не на поблажках из чувства вины перед окружающей средой[98]. Более того, Microsoft, Google и Amazon лицензируют свои платформы искусственного интеллекта, инженерные кадры и инфраструктуру компаниям, добывающим ископаемое топливо, чтобы помочь им найти и добыть топливо из недр земли, что еще больше стимулирует отрасль, наиболее ответственную за антропогенное изменение климата.

      За пределами Соединенных Штатов поднимаются еще большие облака углекислого газа. Китайская индустрия центров обработки данных получает 73 процента электроэнергии из угля, выбросив в 2018 году около 99 миллионов тонн CO2[99]. Ожидается, что к 2023 году потребление электроэнергии инфраструктурой китайских центров обработки данных увеличится на две трети[100]. Гринпис поднял тревогу по поводу колоссальных энергетических потребностей крупнейших технологических компаний Китая, утверждая, что «ведущие технологические компании, включая Alibaba, Tencent и GDS, должны резко увеличить объемы закупок чистой энергии и раскрыть данные об энергопотреблении»[101]. Долгосрочное воздействие угольной энергетики проявляется повсюду, превышая любые национальные границы. Планетарный характер добычи ресурсов и ее последствий СКАЧАТЬ



<p>95</p>

Sutton, «Bitter Lesson.»

<p>96</p>

«AI and Compute.»

<p>97</p>

Cook et al., Clicking Clean.

<p>98</p>

Ghaffary, «More Than 1,000 Google Employees Signed a Letter.» See also «Apple Commits to Be 100 Percent Carbon Neutral»; Harrabin, «Google Says Its Carbon Footprint Is Now Zero»; Smith, «Microsoft Will Be Carbon Negative by 2030.»

<p>99</p>

«Powering the Cloud.»

<p>100</p>

«Powering the Cloud.»

<p>101</p>

«Powering the Cloud.»