Название: Атлас искусственного интеллекта: руководство для будущего
Автор: Кейт Кроуфорд
Издательство: Издательство АСТ
Серия: Программирование для всех
isbn: 978-5-17-148567-2
isbn:
Как пишет Драйер, «к концу 1930-х годов эти архитектуры данных – методы регрессии, стандартного отклонения и корреляции – стали доминирующими инструментами, используемыми для интерпретации социальной и государственной информации на мировой арене. Отслеживая узлы и маршруты мировой торговли, межвоенное „математико-статистическое движение“ стало огромным предприятием»[86]. Это предприятие продолжало расширяться после Второй мировой войны, поскольку новые вычислительные системы использовались в таких областях, как прогнозирование погоды в периоды засухи для повышения производительности крупномасштабного промышленного сельского хозяйства[87]. С этой точки зрения, алгоритмические вычисления, статистика и искусственный интеллект были разработаны в двадцатом веке для решения социальных и экологических проблем, но позже использовались для интенсификации промышленной добычи, эксплуатации и дальнейшего истощения экологических ресурсов.
Минералы – это основа искусственного интеллекта, но его жизненной силой по-прежнему является электрическая энергия. Передовые вычисления редко рассматриваются с точки зрения углеродного следа, ископаемого топлива и загрязнения окружающей среды; метафоры вроде «облака» подразумевают нечто плавающее и хрупкое в рамках естественной, зеленой индустрии[88]. Серверы спрятаны в неприметных центрах обработки данных, и их загрязняющие свойства гораздо менее заметны, чем дымящиеся трубы угольных электростанций. Технологический сектор активно рекламирует свою экологическую политику, инициативы по устойчивому развитию и планы по решению проблем, связанных с климатом, используя ИИ в качестве инструмента решения проблем. Все это является частью создаваемого общественностью имиджа устойчивой технологической индустрии без выбросов углекислого газа. В действительности же для работы вычислительных инфраструктур Amazon Web Services или Microsoft Azure требуется гигантское количество энергии, а углеродный след систем ИИ, работающих на этих платформах, постоянно растет[89].
Как пишет Тунг Хуи Ху в книге «Предыстория облака»: «Облако – это ресурсоемкая, добывающая технология, которая преобразует воду и электричество в вычислительную мощность, нанося значительный ущерб окружающей среде, которую затем вытесняет из поля зрения»[90]. Решение проблемы энергоемкой инфраструктуры стало одной из главных задач. Конечно, отрасль приложила значительные усилия, чтобы сделать центры обработки данных более энергоэффективными и увеличить использование возобновляемых источников энергии. Но уже сейчас углеродный след мировой вычислительной инфраструктуры сравнялся с углеродным следом авиационной промышленности в период ее расцвета, СКАЧАТЬ
85
Dryer, «Designing Certainty,» 45.
86
Dryer, 46.
87
Dryer, 266-68.
88
More people are now drawing attention to this problem – including researchers at AI Now. See Dobbe and Whittaker, «AI and Climate Change.»
89
See, as an example of early scholarship in this area, Ensmenger, «Computation, Materiality, and the Global Environment.»
90
Hu, Prehistory of the Cloud, 146.