8. Запуск обучения:
– Обучение GAN происходит путем вызова функции `train_gan`, которая реализует процесс обучения и выводит значения функций потерь на каждой итерации.
Функция `train_gan` в приведенном выше коде выполняет обучение GAN (Generative Adversarial Network) путем последовательного обучения генератора и дискриминатора на заданном наборе данных (dataset) в течение определенного числа эпох (epochs). Здесь предполагается, что у вас уже есть предопределенная архитектура GAN, которая объединяет генератор и дискриминатор в модель `gan`.
Давайте рассмотрим шаги, которые выполняются в функции `train_gan`:
1. Разделение генератора и дискриминатора:
В начале функции, модель GAN разделяется на генератор (Generator) и дискриминатор (Discriminator). Это делается для последующего отдельного обучения каждого из компонентов на различных данных и с разными метками.
2. Цикл по эпохам:
Функция `train_gan` содержит вложенный цикл, который итерируется по заданному числу эпох (epochs). Каждая эпоха представляет собой один полный проход по всему набору данных.
3. Обучение дискриминатора:
Внутри каждой эпохи, первым шагом является обучение дискриминатора. Для этого:
– Генерируются случайные шумовые входы (noise) для генератора.
– Генератор использует эти шумовые входы для создания сгенерированных данных (generated_data).
– Из текущего батча данных (batch) получаются реальные данные (real_data).
– Дискриминатор обучается на реальных и сгенерированных данных, сравнивая их с правильными метками (в данном случае "реальные" и "сгенерированные").
4. Обучение генератора:
После обучения дискриминатора, происходит обучение генератора.
– Генерируются новые шумовые входы для генератора.
– Генератор обучается на шумовых входах с целевыми метками "реальные". Главная цель генератора – создать данные, которые "обманут" дискриминатор, заставив его классифицировать их как "реальные".
5. Вывод результатов:
После каждой эпохи, выводятся значения функции потерь (loss) для генератора и дискриминатора. Это позволяет отслеживать процесс обучения и оценивать, как улучшается производительность GAN с течением времени.
Обратите внимание, что код представляет упрощенную версию обучения GAN и может потребовать дополнительных оптимизаций, регуляризаций и настроек для успешного обучения и достижения стабильного равновесия между генератором и дискриминатором. Точная реализация обучения GAN может различаться в зависимости от архитектуры и задачи, которую вы пытаетесь решить.
В результате СКАЧАТЬ