Название: Разберись в Data Science. Как освоить науку о данных и научиться думать как эксперт
Автор: Джордан Голдмейер
Издательство: Эксмо
Серия: Мировой компьютерный бестселлер
isbn: 978-5-04-184971-9
isbn:
Но мы перестарались. Наша аудитория не могла критически осмыслить результаты нашей работы, потому что не понимала, о чем мы говорили.
Мы подумали, что должен быть способ получше. Мы хотели повлиять на ситуацию с помощью своей работы, поэтому начали практиковаться в объяснении сложных статистических концепций друг другу и нашим зрителям, а также исследовать то, как наши объяснения воспринимают другие люди.
Нам удалось обнаружить точку соприкосновения между специалистами по работе с данными и бизнес-профессионалами, в которой могут иметь место честные дискуссии о данных, не будучи при этом слишком техническими или слишком упрощенными. Это предполагает более критическое отношение обеих сторон к проблемам данных вне зависимости от их масштаба. Именно об этом и пойдет речь в этой книге.
Вы можете понять общую картину
Для лучшего понимания данных и работы с ними вам необходимо быть готовым к изучению сложных концепций. И даже если вы уже знакомы с ними, мы научим вас тому, как донести их до вашей аудитории.
Вам также предстоит принять такой редко обсуждаемый факт, что во многих компаниях работа с данными оказывается неэффективной. Вы разовьете интуицию, понимание и здоровый скептицизм в отношении чисел и терминов, с которыми сталкиваетесь. Эта задача может показаться сложной, но эта книга поможет вам ее решить. И для этого вам не понадобятся ни навыки программирования, ни докторская степень.
С помощью четких объяснений, мысленных упражнений и аналогий вы сможете выстроить ментальную модель для понимания науки о данных, статистики и машинного обучения.
В следующем примере мы сделаем именно это.
Классификация ресторанов
Представьте, что вы идете по улице и видите пустую витрину с вывеской «Новый ресторан: скоро открытие». Вы устали питаться в сетевых ресторанах и постоянно ищете новые местные заведения, поэтому задаетесь вопросом: «Появится ли здесь новый независимый ресторан?»
Давайте поставим этот вопрос более формально: как вы думаете, будет ли новый ресторан сетевым или независимым?
Угадайте. (Серьезно, подумайте об этом, прежде чем двигаться дальше.)
В реальной жизни вы сделали бы довольно хорошее предположение за доли секунды. Находясь в модном районе с множеством местных пабов и закусочных, вы бы предположили, что ресторан будет независимым. А если бы речь шла о межштатной автомагистрали с расположенным рядом торговым центром, вы бы предположили, что ресторан будет сетевым.
Но когда мы задали вопрос, вы заколебались. Вы подумали, что мы предоставили недостаточно информации. И вы были правы. Мы не предоставили вам никаких данных для принятия решения.
Мораль: для принятия обоснованных решений требуются СКАЧАТЬ