СКАЧАТЬ
с физикой предельно ясна (попробуй, различи, где геометрия, а где физика). 3-й закон Ньютона – объективен, то есть одинаков для всех, а потому и евклидова прямая будет объективна, и одинакова для всех, в том числе и для всех геометров. Эта прямая будет одна и та же у всех кто бы эту нить не натягивал будь это: Евклид, Лобачевский, Риман, Гильберт и т. д. А тогда как могло случиться, что у всех перечисленных геометров геометрии получились разные? Я думаю, что читатель уже догадывается: Лобачевский, Риман, Гильберт, не знают, как на самом деле строятся те прямые, о которых они говорят. И, следовательно, они ничего не знают о том, что такое прямая. Но они полагают, что знают это. И в результате приходят к ложному выводу о том, что могут существовать ещё и другие, неевклидовые прямые. Но, как мы только что видели из опыта, объективна лишь евклидова прямая. А все остальные, «неевклидовы прямые», будут субъективны. И неевклидовы геометрии также будут субъективными. Это будут всего лишь воображаемые (субъектом) геометрии, и никакого отношения к объективным свойствам пространства они иметь не будут. Почему так происходит? Да потому, что создатели неевклидовых геометрий (идеалисты) начинают рассуждения от мысли: «Прямые существуют». А это утверждение ещё нужно сначала доказывать. А геометры-материалисты начинают рассуждения от мысли: «Как нужно строить прямые, чтобы, будучи построенные, они после этого начали существовать». В этой ситуации неевклидовы геометры ведут себя, как законченные идеалисты. В самом деле. Попробуйте-ка, докажите, что прямые существуют, предварительно не построив прямую, по каким-то обоснованным правилам! Вам это не удастся, сколько бы вы ни старались. Прямая будет существовать только после того, как её кто-то построит. А чтобы её построить, надо сначала знать, как её построить. И материалисты-геометры как раз и начинают с её построения.
К неевклидовым геометриям я ещё вернусь, когда я буду обсуждать вопрос о возможности измерений в неевклидовых геометриях. А сейчас нам важно увидеть, какую негативную роль играет идеализм в физико-математических науках, особенно в их основаниях. При определении основного понятия идеалист всякий раз переходит от одной мысли к другой, а не от экспериментального факта к мысли о нем, а затем только к другим мыслям (как это делает материалист). В результате такого подхода идеалист неизбежно впадает в порочный круг. Всякое утверждение идеалиста в этом порочном круге всегда может быть оспорено. И не только. Оно (утверждение) может просто оказаться ложным. Всегда найдется человек, который спросит идеалиста: «Как Вы это узнали?» И тому, кому будет задан этот вопрос, придется долго и нудно объяснять, как он это узнал. И объясняя все это, идеалист неизбежно втянется в тот же порочный круг, по которому он и кружил. Вопрос о том, как вы это узнали, станет чисто риторическим (лишним или ненужным) только тогда, когда вы в своих рассуждениях укажете на эксперимент. Вы укажете на него, сказав: «Я узнал это из этого экспериментального факта». Почему этого
СКАЧАТЬ