Parasitology. Alan Gunn
Чтение книги онлайн.

Читать онлайн книгу Parasitology - Alan Gunn страница 53

Название: Parasitology

Автор: Alan Gunn

Издательство: John Wiley & Sons Limited

Жанр: Медицина

Серия:

isbn: 9781119641223

isbn:

СКАЧАТЬ a parasitophorous vacuole forms around the parasites and within this, they transform into the amastigote stage (1.5–4 μm in size). The amastigotes multiply by binary fission and once large numbers are present within a cell, it is sometimes referred to as a pseudocyst. Eventually, the parasites kill their host cell and then they transform back to trypomastigotes (Figure 4.10). The trypomastigotes then invade new cells and repeat the process. This distinguishes T. cruzi from Leishmania in which the parasites occur mainly within phagocytic cells and remain in the amastigote stage within the vertebrate host. The trypomastigotes of T. cruzi are unable to reproduce although large numbers of them may occur in the blood stream, especially during the early stages of infection. Broad and slender morphotypes of the trypomastigotes exist. Both forms are small (16.3–21.8 μm in length including the flagellum) compared with those of some other trypanosomes and they have a characteristic curved ‘C’ shape. By contrast, their kinetoplast is exceptionally large and the cell membrane sometimes bulges around it.

Photo depicts trypanosoma cruzi.

      The course of Chagas disease varies considerably, and there are marked disparities between individuals and geographic localities. This suggests that genetic differences on the parts of both the parasite and the host influence the manifestation of disease. There are two phases of the disease: an acute phase and a chronic phase. Initial parasite invasion may cause an acute infection or symptoms so general that it is not obvious that infection has occurred. The acute phase is characterised by high levels of parasitaemia and in a small percentage of cases proves fatal. There is often an initial localised inflammatory response with swelling of the nearest lymph node. If the infection starts at an insect bite wound, a raised red nodule develops called a ‘chagoma’. If the infection occurs via the eye, it induces a condition called Romaňa’s sign in which the eyelid and preauricular lymph node swell so much that the eye becomes closed. As the acute phase of the disease progresses, the parasites invade all organs of the body. However, the most severe consequences arise from the parasite’s tendency to localise within and destroy heart muscle and cardiac ganglion cells. The pathological mechanisms are uncertain. However, damage to cardiac muscle during chronic Chagas disease may have an autoimmune basis. As he became older, Charles Darwin suffered from chronic ill health, the symptoms of which were consistent with him suffering from Chagas disease. Obviously, it is impossible to confirm this, but in his South American journals he recorded being bitten by reduvidid bugs. If the parasites invade the brain, meningoencephalitis can develop with potentially fatal or long‐term damage as a result. The patient often develops a fever and their liver and spleen become enlarged; they may also suffer from diarrhoea and exhibit evidence of respiratory infection. The acute phase occurs most commonly in children less than 5‐years‐old but unless their heart or nervous tissues are severely damaged, most of them recover even without adequate medical treatment.

      There are isolated case reports of Chlorella spp. infecting wounds in humans and other mammals. There are also accounts of fatal disseminated infections in sheep that were presumably acquired via the digestive tract after consuming contaminated drinking water (Ramírez‐Romero et al. 2010). These, presumably, represent rare opportunistic infections. Some species of algae lost their chloroplasts during evolution. Amongst these are members of the genus Prototheca, which includes species that parasitize mammals and the genus Helicosporidium that are parasitic in insects.

      Members of this genus are closely related to the well‐known alga Chlorella, but they lack chloroplasts, and most species survive as saprophytes feeding on dead organic matter in a similar manner to free‐living fungi. They are found throughout the world and can be isolated from the soil, slime, sludge, gut contents, faeces, marine and freshwater, swimming pools, and virtually anywhere which has high organic matter content (Kano 2020). Some species are facultative parasites that infect various animal species with consequences that range from mild disease to fatalities. Prototheca wickerhamii and Prototheca zopfii are responsible for most human infections. These are usually associated with patients who are immunocompromised through disease (e.g., HIV infection) or medical treatment (e.g., chemotherapy/ corticosteroid therapy). A new species, Prototheca cutis, was described from a patient in Japan (Satoh et al. 2010) and further species will probably be discovered in the future now that the genus is receiving more attention. In 2018, an outbreak occurred in a cancer chemotherapy unit in India that resulted in 12 patients becoming infected with P. wickerhamii (Khan et al. 2018).

      The algae gain entry to the body via the skin – usually through an existing wound – and cause a localised cutaneous infection. This often manifests as dermatitis with the formation of pustules, ulcers, and erythematous plaques. Occasionally, the infection becomes disseminated throughout the body and causes potentially fatal meningitis (Joerger et al. 2020).

      There are isolated but increasing case reports of dogs and cats suffering from illnesses caused by Prototheca. These often take the form of gastrointestinal infections that cause diarrhoea, but they can become disseminated elsewhere in the body with often fatal results. In cows, P. wickerhamii, P. zopfii, and Prototheca blaschkeae are responsible СКАЧАТЬ