Properties for Design of Composite Structures. Neil McCartney
Чтение книги онлайн.

Читать онлайн книгу Properties for Design of Composite Structures - Neil McCartney страница 76

СКАЧАТЬ minus mu Subscript m Baseline right-parenthesis squared upper V Subscript f Baseline upper V Subscript m Baseline Over upper V Subscript m Baseline mu Subscript upper A Superscript f Baseline plus upper V Subscript f Baseline mu Subscript m Baseline plus zero width space zero width space mu Subscript m Baseline EndFraction less-than-or-equal-to mu Subscript upper A Superscript eff Baseline less-than-or-equal-to upper V Subscript f Baseline mu Subscript upper A Superscript f Baseline plus upper V Subscript m Baseline mu Subscript m Baseline minus StartFraction left-parenthesis mu Subscript upper A Superscript f Baseline minus mu Subscript m Baseline right-parenthesis squared upper V Subscript f Baseline upper V Subscript m Baseline Over upper V Subscript m Baseline mu Subscript upper A Superscript f Baseline plus upper V Subscript f Baseline mu Subscript m Baseline plus zero width space zero width space mu Subscript upper A Superscript f Baseline EndFraction comma"/>(4.198)

      4.10.7 Axial Thermal Expansion

      The bounds for the axial thermal expansion are given by

      StartLayout 1st Row upper V Subscript f Baseline upper E Subscript upper A Superscript f Baseline alpha Subscript upper A Superscript f Baseline plus upper V Subscript m Baseline upper E Subscript m Baseline alpha Subscript m Baseline plus StartStartFraction 4 left-parenthesis nu Subscript upper A Superscript f Baseline minus nu Subscript m Baseline right-parenthesis left-parenthesis ModifyingAbove alpha With caret Subscript upper T Superscript f Baseline minus ModifyingAbove alpha With caret Subscript upper T Superscript m Baseline right-parenthesis upper V Subscript f Baseline upper V Subscript m Baseline OverOver StartFraction upper V Subscript m Baseline Over k Subscript upper T Superscript f Baseline EndFraction plus StartFraction upper V Subscript f Baseline Over k Subscript upper T Superscript m Baseline EndFraction plus StartFraction 1 Over mu Subscript m Baseline EndFraction EndEndFraction less-than-or-equal-to upper E Subscript upper A Superscript eff Baseline alpha Subscript upper A Superscript eff Baseline 2nd Row less-than-or-equal-to upper V Subscript f Baseline upper E Subscript upper A Superscript f Baseline alpha Subscript upper A Superscript f Baseline plus upper V Subscript m Baseline upper E Subscript m Baseline alpha Subscript m Baseline plus StartStartFraction 4 left-parenthesis nu Subscript upper A Superscript f Baseline minus nu Subscript m Baseline right-parenthesis left-parenthesis ModifyingAbove alpha With caret Subscript upper T Superscript f Baseline minus ModifyingAbove alpha With caret Subscript upper T Superscript m Baseline right-parenthesis upper V Subscript f Baseline upper V Subscript m Baseline OverOver StartFraction upper V Subscript m Baseline Over k Subscript upper T Superscript f Baseline EndFraction plus StartFraction upper V Subscript f Baseline Over k Subscript upper T Superscript m Baseline EndFraction plus StartFraction 1 Over mu Subscript t Superscript f Baseline EndFraction EndEndFraction comma EndLayout(4.199)

      where

      ModifyingAbove alpha With caret Subscript upper T Baseline equals alpha Subscript upper T Baseline plus nu Subscript upper A Baseline alpha Subscript upper A Baseline period(4.200)

      These bounds are valid only if (νAf−νm)(α^Tf−α^Tm)(μtf−μm)≥0, and the bounds are reversed if (νAf−νm)(α^Tf−α^Tm)(μtf−μm)≤​​0.

      4.10.8 Transverse Thermal Expansion

      The bounds for the transverse thermal expansion are given by

      StartLayout 1st Row upper V Subscript f Baseline ModifyingAbove alpha With caret Subscript upper T Superscript f Baseline plus upper V Subscript m Baseline ModifyingAbove alpha With caret Subscript upper T Superscript m Baseline minus StartStartFraction left-parenthesis StartFraction 1 Over k Subscript upper T Superscript f Baseline EndFraction minus StartFraction 1 Over k Subscript upper T Superscript m Baseline EndFraction right-parenthesis left-parenthesis ModifyingAbove alpha With caret Subscript upper T Superscript f Baseline minus ModifyingAbove alpha With caret Subscript upper T Superscript m Baseline right-parenthesis upper V Subscript f Baseline upper V Subscript m Baseline OverOver StartFraction upper V Subscript m Baseline Over k Subscript upper T Superscript f Baseline EndFraction plus StartFraction upper V Subscript f Baseline Over k Subscript upper T Superscript m Baseline EndFraction plus StartFraction 1 Over mu Subscript m Baseline EndFraction EndEndFraction less-than-or-equal-to ModifyingAbove alpha With caret Subscript upper T Superscript eff Baseline 2nd Row less-than-or-equal-to upper V Subscript f Baseline ModifyingAbove alpha With caret Subscript upper T Superscript f Baseline plus upper V Subscript m Baseline ModifyingAbove alpha With caret Subscript upper T Superscript m Baseline minus StartStartFraction left-parenthesis StartFraction 1 Over k Subscript upper T Superscript f Baseline EndFraction minus StartFraction 1 Over k Subscript upper T Superscript m Baseline EndFraction right-parenthesis left-parenthesis ModifyingAbove alpha With caret Subscript upper T Superscript f Baseline minus ModifyingAbove alpha With caret Subscript upper T Superscript m Baseline right-parenthesis upper V Subscript f Baseline upper V Subscript m Baseline OverOver StartFraction upper V Subscript m Baseline Over k Subscript upper T Superscript f Baseline EndFraction plus StartFraction upper V Subscript f Baseline Over k Subscript upper T Superscript m Baseline EndFraction plus StartFraction 1 Over mu Subscript t Superscript f Baseline EndFraction EndEndFraction comma EndLayout(4.201)

      which are valid only if (kTf−kTm)(α^Tf−α^Tm)(μtf−μm)≤0, and the bounds are reversed if (kTf−kTm)(α^Tf−α^Tm)(μtf−μm)≥0.

      4.11 Comparison of Predictions with Known Results

      The effective properties of a two-phase composite, derived using Maxwell’s methodology, may be expressed in the form of a mixtures estimate plus a correction term, as seen from the results in Section 4.8. It should be noted that the correction term is always proportional to the product VfVm of volume fractions, and a term that involves the square of property differences for the case of conductivity, bulk and shear moduli, and the product of the bulk compressibility difference and expansion coefficient difference for the case of thermal expansion. The form of these СКАЧАТЬ