Properties for Design of Composite Structures. Neil McCartney
Чтение книги онлайн.

Читать онлайн книгу Properties for Design of Composite Structures - Neil McCartney страница 41

СКАЧАТЬ slash left-parenthesis sigma-summation Underscript i equals 1 Overscript upper N Endscripts StartFraction upper V Subscript p Superscript i Baseline Over kappa Subscript p Superscript left-parenthesis i right-parenthesis Baseline plus 2 kappa Subscript m Baseline EndFraction plus StartFraction upper V Subscript m Baseline Over 3 kappa Subscript m Baseline EndFraction right-parenthesis period"/>(3.11)

      For multiphase composites, Hashin and Shtrikman [5, Equations (3.21)–(3.23)] derived bounds for magnetic permeability, pointing out that they are analogous to bounds for effective thermal conductivity. Their conductivity bounds may be expressed in the following simpler form, having the same structure as the result (3.10) derived using Maxwell’s methodology

      where κmin is the lowest value of conductivities for all phases, whereas κmax is the highest value.

      3.3 Bulk Modulus and Thermal Expansion Coefficient

      3.3.1 Spherical Particle Embedded in Infinite Matrix Subject to Pressure and Thermal Loading

      u Subscript r Baseline equals f left-parenthesis r right-parenthesis comma u Subscript theta Baseline equals 0 comma u Subscript phi Baseline equals 0 period(3.13)

      The corresponding strain field obtained from (2.142) is then given by

      epsilon Subscript r r Baseline equals StartFraction partial-differential u Subscript r Baseline Over partial-differential r EndFraction comma epsilon Subscript theta theta Baseline equals epsilon Subscript phi phi Baseline equals StartFraction u Subscript r Baseline Over r EndFraction comma epsilon Subscript r theta Baseline equals epsilon Subscript r phi Baseline equals epsilon Subscript theta phi Baseline equals 0 period(3.14)

      The stress field follows from stress-strain relations expressed in the form (see (2.160) for the Cartesian equivalent)

      where λ and μ are Lamé’s constants and where α is now the linear coefficient of thermal expansion. On using the equilibrium equations (2.130)–(2.133), it can be shown that, within the spherical particle of radius a, the resulting bounded displacement and stress fields are given by

      u Subscript r Superscript p Baseline zero width space zero width space equals alpha Subscript p Baseline upper Delta upper T r minus StartFraction p 0 Over 3 k Subscript p Baseline EndFraction r comma u Subscript theta Superscript p Baseline equals u Subscript phi Superscript p Baseline equals 0 comma(3.16)

      sigma Subscript r r Superscript p Baseline equals sigma Subscript theta theta Superscript p Baseline equals sigma Subscript phi phi Superscript p Baseline equals minus p 0 comma sigma Subscript r theta Superscript p Baseline equals sigma Subscript r phi Superscript p Baseline equals sigma Subscript theta phi Superscript p Baseline equals 0 comma(3.17)

      where kp= λp+23μp and μp are the bulk and shear moduli, respectively, for the particulate reinforcement, and where αp is the corresponding thermal expansion coefficient. Clearly the strain and stress distributions within the particle are both uniform. For the matrix region it can be shown that

      u Subscript r Superscript m Baseline zero width space zero width space equals alpha Subscript m Baseline upper Delta upper T r minus StartFraction p Over 3 k Subscript m Baseline EndFraction r plus StartFraction p 0 minus p Over 4 mu Subscript m Baseline EndFraction StartFraction a cubed Over r squared EndFraction comma u Subscript theta Superscript m Baseline zero width space zero width space equals 0 comma u Subscript phi Superscript m Baseline zero width space zero width space equals 0 comma(3.18)

      where km= λm+23μm and μm are the bulk and shear moduli, respectively, for the matrix, and where αm is the corresponding thermal expansion coefficient. The stress component σrr is automatically continuous across r = a having the value −p0. As the displacement component ur must also be continuous across this interface, СКАЧАТЬ