Poly(lactic acid). Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Poly(lactic acid) - Группа авторов страница 78

Название: Poly(lactic acid)

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Химия

Серия:

isbn: 9781119767466

isbn:

СКАЧАТЬ the observed X‐ray diffraction profiles. At present, the two possible models (model 2 and model 3) are considered as the best candidates for the β form (Figure 6.8). The U (and D) chains are surrounded by the U and D chains in a different environment depending on the local position, suggesting the frustrated structure as pointed out by Lotz et al. [18]. The comparison between the observed and calculated 1D‐WAXD profiles is presented in Figure 6.9.

Schematic illustration of crystal structure of PLLA beta form (model 2).

      Source: Reproduced from Wang et al., Macromolecules 2017, 50, 3285–3300

      6.2.5 Structure of the Mesophase

      The 2D X‐ray diffraction pattern of the uniaxially oriented mesophase, prepared by stretching the amorphous sample around T g, is shown in Figure 6.2a. The pattern is very broad and diffuse. The relative content of the mesophase increases with an increase of tensile drawing ratio of the original amorphous sample [54]. The X‐ray data analysis revealed that the oriented mesophase contains the conformationally disordered 10/3 helical chains, which are gathered together to form the small domains of about 30 Å (c‐axis) × 20 Å (lateral direction) size with low correlation between them [5]. By heating, the mesophase undergoes the stepwise disorder‐to‐order phase transformation to the δ and α forms [5] (refer to Section 6.3.1). These transitions were proposed to occur, not by the solid‐to‐solid process, but by the melt‐recrystallization process, although not yet confirmed [55].

Schematic illustration of comparison of the observed X-ray diffraction profiles with those calculated for the structure model 2 of the beta form.

      Source: Reproduced from Wang et al., Macromolecules 2017, 50, 3285–3300.

      6.3.1 Phase Transition in Cold Crystallization

      6.3.2 Phase Transition in the Melt Crystallization

      As predicted from the phase diagram (Figure 6.1), quenching the melt gives various crystalline phases depending on the quenching temperature. The X‐ray diffraction measurement revealed the details as shown elsewhere [5]. The mesophase was formed when the quenching temperature was near T g. By quenching into 100–120°C, the δ crystal was formed. Cooling to the higher temperature caused crystallization to the α form.

Schematic illustration of temperature dependence of 2D X-ray diffraction patterns of the oriented PLLA mesophase measured in the heating process.

      Source: Reproduced from Wasanasuk et al., Macromolecules 2011, 44, 9650–9660.

Schematic illustration of the temperature dependence of the crystallite size estimated for the equatorial and meridional directions of the oriented PLLA sample during the cold crystallization process starting from the meso form.

      Source: Reproduced from Wasanasuk et al., Macromolecules 2011, 44, 9650–9660.

      6.3.3 СКАЧАТЬ