Название: Poly(lactic acid)
Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Жанр: Химия
isbn: 9781119767466
isbn:
FIGURE 6.8 Crystal structure of PLLA β form (model 2).
Source: Reproduced from Wang et al., Macromolecules 2017, 50, 3285–3300
6.2.5 Structure of the Mesophase
The 2D X‐ray diffraction pattern of the uniaxially oriented mesophase, prepared by stretching the amorphous sample around T g, is shown in Figure 6.2a. The pattern is very broad and diffuse. The relative content of the mesophase increases with an increase of tensile drawing ratio of the original amorphous sample [54]. The X‐ray data analysis revealed that the oriented mesophase contains the conformationally disordered 10/3 helical chains, which are gathered together to form the small domains of about 30 Å (c‐axis) × 20 Å (lateral direction) size with low correlation between them [5]. By heating, the mesophase undergoes the stepwise disorder‐to‐order phase transformation to the δ and α forms [5] (refer to Section 6.3.1). These transitions were proposed to occur, not by the solid‐to‐solid process, but by the melt‐recrystallization process, although not yet confirmed [55].
FIGURE 6.9 Comparison of the observed X‐ray diffraction profiles with those calculated for the structure model 2 of the β form.
Source: Reproduced from Wang et al., Macromolecules 2017, 50, 3285–3300.
6.3 THERMALLY INDUCED PHASE TRANSITIONS
6.3.1 Phase Transition in Cold Crystallization
The crystallization phenomenon caused by heating the amorphous sample is known as cold‐crystallization in contrast to the melt‐crystallization that occurs during the cooling process from the molten state. The temperature‐dependent 2D‐WAXD patterns were measured for the uniaxially oriented mesophase sample in the cold‐crystallization process, as shown in Figure 6.10 [5]. The mesophase started to transform to the δ form at around T g. The δ form grew gradually during heating to 120°C. Once the sample was heated above 120°C, the δ form transformed to the α form. By further heating, the α form did not directly transform to the molten state, but it first changed to the mesophase once again and then to the melt. The growth of the crystallite size was estimated by analyzing the change of the half‐width of the X‐ray diffraction spots using Scherrer’s equation [52]. Figure 6.11 shows the results obtained for the equatorial (200/110 peak) and meridional (0010 peak) directions. The starting mesophase has a quite small crystal size of ca. 30 Å (c‐axis) × 20 Å (ab‐plane). It changes gradually to the δ form with a larger size of ca. 75 Å (c‐axis) × 100 Å (ab‐plane). The α form developed from δ form has a larger crystal size of ca. 175 Å (c‐axis) × 300 Å (ab‐plane).
6.3.2 Phase Transition in the Melt Crystallization
As predicted from the phase diagram (Figure 6.1), quenching the melt gives various crystalline phases depending on the quenching temperature. The X‐ray diffraction measurement revealed the details as shown elsewhere [5]. The mesophase was formed when the quenching temperature was near T g. By quenching into 100–120°C, the δ crystal was formed. Cooling to the higher temperature caused crystallization to the α form.
Figure 6.12a and b show the time dependence of the infrared absorbance at 921 cm−1 band, which is common to various crystal phases, measured in the temperature jump process from the amorphous phase or from the melt [5]. In these experiments, the temperature was changed quite sharply to a preset crystallization point by using a homemade temperature jump cell [56]. The crystallization rate k was estimated from the steepest slope of the intensity‐vs‐time curves at each temperature, as seen in Figure 6.12c. The crystallization rate started to increase above 70°C and showed a maximum at around 110°C, and then decreased with increasing temperature. These curves are similar to those of the spherulite growth rate measured with an optical microscope [50, 57]. The two important points are extracted from these experimental data. One is about the crystallization of the different crystal forms: in the low temperature region (70–110°C), the δ form is produced, while the α form is crystallized in the high temperature region (>110°C), as already mentioned above. Another point is about the crystallization rate. As seen in Figure 6.12c, the cold‐crystallization gave the crystallization rate higher than the melt‐crystallization when compared at the same crystallization temperature. The higher crystallization rate in the cold crystallization phenomenon was ascribed to the higher content of the crystalline nuclei produced in the cooling process from the amorphous phase compared with that from the molten state [58, 59].
FIGURE 6.10 Temperature dependence of 2D X‐ray diffraction patterns of the oriented PLLA mesophase measured in the heating process.
Source: Reproduced from Wasanasuk et al., Macromolecules 2011, 44, 9650–9660.
FIGURE 6.11 The temperature dependence of the crystallite size estimated for the equatorial and meridional directions of the oriented PLLA sample during the cold crystallization process starting from the meso form.
Source: Reproduced from Wasanasuk et al., Macromolecules 2011, 44, 9650–9660.
6.3.3 СКАЧАТЬ