Large Animal Neurology. Joe Mayhew
Чтение книги онлайн.

Читать онлайн книгу Large Animal Neurology - Joe Mayhew страница 69

Название: Large Animal Neurology

Автор: Joe Mayhew

Издательство: John Wiley & Sons Limited

Жанр: Биология

Серия:

isbn: 9781119477198

isbn:

СКАЧАТЬ cyst in a horse. Equine Vet J 1997; 29(1): 75–76.

      7 7 Landolt GA. Management of equine poisoning and envenomation. Vet Clin North Am Equine Pract 2007; 23(1): 31–47.

      8 8 Khan SA, Kuster DA and Hansen SR. A review of moxidectin overdose cases in equines from 1998 through 2000. Vet Hum Toxicol 2002; 44(4): 232–235.

      9 9 Muhammad F, Nguyen TDT, Raza A, Akhtar B and Aryal S. A review on nanoparticle‐based technologies for biodetoxification. Drug Chem Toxicol 2017; 40(4): 489–497.

      10 10 Bandarra PM, Pavarini SP, Raymundo DL, et al. Trema micrantha toxicity in horses in Brazil. Equine Vet J 2010; 42(5): 456–459.

      11 11 Ozmen O, Sahinduran S, Haligur M and Sezer K. Clinicopathologic observations on Coenurus cerebralis in naturally infected sheep. Schweiz Arch Tierheilkd 2005; 147(3): 129–134.

      12 12 Giadinis ND, Psychas V, Polizopoulou Z, et al. Acute coenurosis of dairy sheep from 11 flocks in Greece. N Z Vet J 2012; 60(4): 247–253.

      13 13 Ozmen O and Mor F. Acute lead intoxication in cattle housed in an old battery factory. Vet Hum Toxicol 2004; 46(5): 255–256.

      14 14 Johnson PJ, Mrad DR, Schwartz AJ and Kellam L. Presumed moxidectin toxicosis in three foals. J Am Vet Med Assoc 1999; 214(5): 678–680.

      15 15 Brownlow MA, Dart AJ and Jeffcott LB. Exertional heat illness: a review of the syndrome affecting racing Thoroughbreds in hot and humid climates. Aust Vet J 2016; 94(7): 240–247.

Schematic illustration of the anatomy of a horse depicting its brain.

      A lesion in the eye or optic nerve on one side, with the other eye and its optic system normal, results in blindness and a suppressed menace response in that eye with slightly dilated pupils (mydriasis) and poor pupillary constriction in both eyes when light is shone in the blind eye. The degree of mydriasis evident will depend on the ambient light that the other normal eye is exposed to. A patient can be clinically blind with an absent menace response and a slightly dilated pupil in one eye due to an eye or optic nerve lesion, and can still have some pupillary constriction in response to a very bright strobe light shone in that eye. This discrepancy comes down to difficulties in determining when an animal is totally blind, and the fact that visual path fibers are probably damaged more readily with various eyeball and optic nerve lesions than are light pathway fibers destined for the oculomotor nuclei in the midbrain. With respect to visual perception, possibly the most sensitive test of crude visual pathway input is to place a blind patient having no menace responses in a dark enclosed area with a brightly lighted exit available to see if the patient can discern the escape route.

Photo depicts head trauma, bilateral blindness with dilated and nonresponsive pupils in a fully conscious horse as in top figure, is most likely due to bilateral optic nerve injury.

      The swinging light test can be useful to help sort out difficult visual deficits too, as performing and interpreting consensual or indirect pupillary light reflexes in large animals is problematic, particularly with partial lesions, and often having to perform the examination in daylight without access to a darkened environment (see case example in Chapter 10).

      It is often good to recall that even partial sunlight is brighter than any commonly used, handheld penlight or ophthalmoscope.

      Here, it must be recalled that blinking in response to a bright light, the dazzle response, does not involve the visual pathways from the thalamus to the visual cortex, and the presence of this response does not equate with intact vision. Its presence does indicate that light is stimulating the light pathways into the midbrain and thence to the facial nucleus, but it should not replace testing the true pupillary light and menace responses as outlined. Thus, it is conceivable that a dazzle response can be present in a centrally blind patient that also has no oculomotor nerve function and therefore no pupillary light reflexes, a very unlikely clinicopathologic scenario.

      The postictal period may be associated with temporary central blindness presumably due to neuronal exhaustion in central visual pathways. Also neonates, although they can see, have poor menace responses in the first 1 or 2 weeks of life.8

      Finally, degrees of blindness occur with many ocular diseases. Of some note is that with cases of congenital peripheral blindness, there can be associated abnormal eyeball positions, with the globe directed dorsally and sometimes wavering, searching eyeball movements. Removal of obstacles and provision of a “buddy” that wears a bell are some of the provisions that assist in caring for a blind horse.9,10 The reader is referred to texts of ophthalmology and particularly to chapters on neuro‐ophthalmology in large animals.911–18

СКАЧАТЬ