Large Animal Neurology. Joe Mayhew
Чтение книги онлайн.

Читать онлайн книгу Large Animal Neurology - Joe Mayhew страница 43

Название: Large Animal Neurology

Автор: Joe Mayhew

Издательство: John Wiley & Sons Limited

Жанр: Биология

Серия:

isbn: 9781119477198

isbn:

СКАЧАТЬ and Neospora surface antigens in CSF and blood has become popular and is very useful to assist in the diagnosis of equine protozoal myeloencephalitis,40,41 especially when Sarcocystis neurona vaccines were used.38 In particular, the ratios of specific antibody in serum to CSF are used to reveal locally produced (i.e., intrathecal) antibodies indicative of CNS infection.42 Unfortunately, while this antibody ratio technique is highly specific and sensitive for EPM diagnosis, it is not accurate for the diagnosis of equine neuroborreliosis.43 As with many of such tests, a negative result with S. neurona immunotesting using CSF (and serum) is very useful to rule out the disease in a case with clear clinical signs in an area where the background frequency of exposure is low. However, debate arises as to interpretation of marginal test results when clinical signs are equivocal and there is a high exposure rate in the sample population. This is particularly true for a negative result, as the negative predictive value declines with increasing disease (exposure) prevalence, and for EPM the consequences of a false‐negative result (failure to treat) are more serious than a false‐positive result (unnecessary treatment). Again, with a high rate of false‐positive and false‐negative results occurring with borreliosis testing, there can be no reliance on serology for the confirmation of that disease.

      One aspect of CSF chemistry that may well become useful in future is the analysis of levels of neurotransmitters, neurohormonal metabolic products, and antibodies directed against constitutive proteins to help categorize some disease states.44–49 This will most likely relate to those diseases that have no recognized morbid neuropathologic basis, such as shivers, headshaking, narcolepsy, cataplexy, self‐mutilation, rage syndrome, acquired tremor syndromes, spastic syndrome, and spastic paresis, although some progress has recently been made on the search for a putative genetic component to the latter two syndromes.50

Photo depicts ultrasound-guided collection of CSF from between C1 and C2 in a standing sedated horse (A and B).

      Source: Images courtesy of Sally DeNotta, University of Florida, USA.

      Infectious diseases can result in CSF pleocytosis and the elevation of protein content. The cell type present varies considerably, but generally neutrophils predominate with bacterial diseases and small mononuclear cells with viral diseases. Notable exceptions to this are high neutrophil numbers with Eastern equine encephalitis and high mononuclear cell numbers with listeriosis and equine neuroborreliosis. Fungal and protozoal diseases usually cause mixed cell responses. Protozoal, and particularly helminth parasite infestations, may produce an eosinophilic and neutrophilic response in the CSF, as well as hemorrhage. In contrast to bacterial meningitis where the neutrophils are degenerate and show toxic changes, with parasitic invasions and specific viral diseases the polymorphonuclear cells are nondegenerate and multilobulated due to their age. In most chronic inflammatory states and in diseases in which there is much CNS tissue necrosis, the CSF can contain many large mononuclear cells or macrophages.

      Although immune‐associated CNS disorders such as canine steroid‐responsive meningitis have not yet been reported in large animals, there would be an expected modest pleocytosis, usually mononuclear, and, extrapolating from canine practice, it may well be worth sampling CSF from both the cervical and lumbar regions to maximize the likelihood of identifying the major CSF cytologic response.51 This recommendation also likely holds true for many of the infectious spinal disorders.

      With traumatic injury to the CNS, there is often some hemorrhage into the CSF with resulting yellow discoloration that can persist for days after the insult. This xanthochromia remains after red cells have been centrifuged off. Neutrophils, not showing toxic changes, followed by macrophages, will usually appear in the CSF in response to hemorrhage.

      In most toxic, nutritional, and metabolic neurologic diseases, the results of routine CSF analyses are generally normal. However, for those diseases in which there can be considerable tissue destruction, such as lead poisoning, sodium salt/water intoxication and polioencephalomalacia in ruminants, and moldy corn‐associated leukoencephalomalacia in horses, there may be some protein leakage into, and a mononuclear cell response within, the CSF.

      Typically, there is leakage of protein and some xanthochromia without any significant pleocytosis in many vascular diseases. If the hemorrhage is large, then neutrophils and macrophages may also be seen.

      Neoplasms can act like other space‐occupying lesions, such as abscesses, granulomas (such as cholesterinic granulomas in horses) and hematomas, and can increase intracranial pressure. The most frequent CSF change in patients with neoplasia is a slight elevation in protein content. Sometimes there is evidence of mild injury, xanthochromia, and a few macrophages. Rarely, there have been atypical lymphocytes detected in CSF from cattle with CNS lymphosarcoma. Atypical cells such as melanoblasts have been detected in CSF samples, but it is worth considering whether such cells may have been disrupted from meningeal sites during the course of CSF collection.

      Because of the lymphatic‐like drainage system of the CNS from perivascular and Virchow–Robin spaces ultimately to the subarachnoid space, any process that is contained within the parenchyma of the CNS may ultimately cause the leakage of pigments or protein, or the exfoliation of cells into the CSF.