Biomolecules from Natural Sources. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Biomolecules from Natural Sources - Группа авторов страница 34

СКАЧАТЬ and Qin, W. (2009). Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. International Journal of Biological Sciences 5 (6): 578–595.

      18 18 Feeney, K.A., Wellner, N., Gilbert, S.M., Halford, N.G., Tatham, A.S., Shewry, P.R., and Belton, P.S. (2003). Molecular structures and interactions of repetitive peptides based on wheat glutenin subunits depend on chain length. Biopolymers 72 (2): 123–131.

      19 19 Fritzsche, K., Lenz, R.W., and Fuller, R.C. (1990). Bacterial polyesters containing branched poly(beta-hydroxyalkanoate) units. International Journal of Biological Macromolecules 12 (2): 92–101.

      20 20 Kim, Y.B., Lenz, R.W., and Fuller, R.C. (1992). Poly(β-hydroxyalkanoate) copolymers containing brominated repeating units produced by Pseudomonas oleovorans. Macromolecules 25 (7): 1852–1857.

      21 21 Pourabedin, M., Xu, Z., Baurhoo, B., Chevaux, E., and Zhao, X. (2014). Effects of mannan oligosaccharide and virginiamycin on the cecal microbial community and intestinal morphology of chickens raised under suboptimal conditions. Canadian Journal of Microbiology 60 (5): 255–266.

      22 22 Japelj, N., Suligoj, T., Zhang, W., Corte-Real, B., Messing, J., and Ciclitira, P.J. (2020). Natural variants of alpha-gliadin peptides with wheat proteins with reduced toxicity in coeliac disease. British Journal of Nutrition 123 (12): 1382–1389.

      23 23 Pei, F., Sun, L., Fang, Y., Yang, W., Ma, G., Ma, N., and Hu, Q. (2020). Behavioral changes in glutenin macropolymer fermented by Lactobacillus plantarum LB-1 to promote the rheological and gas production properties of dough. Journal of Agricultural and Food Chemistry 68 (11): 3585–3593.

      24 24 Sharma, I. and Kango, N. (2021). Production and characterization of keratinase by Ochrobactrum intermedium for feather keratin utilization. International Journal of Biological Macromolecules 166: 1046–1056.

      25 25 Balitaan, J.N.I., Hsiao, C.D., Yeh, J.M., and Santiago, K.S. (2020). Innovation inspired by nature: biocompatible self-healing injectable hydrogels based on modified-beta-chitin for wound healing. International Journal of Biological Macromolecules 162: 723–736.

      26 26 Celik, C., Ildiz, N., Sagiroglu, P., Atalay, M.A., Yazici, C., and Ocsoy, I. (2020). Preparation of nature inspired indicator based agar for detection and identification of MRSA and MRSE. Talanta 219: 121292.

      27 27 Ferreira, L.M., Sari, M.H.M., Azambuja, J.H., da Silveira, E.F., Cervi, V.F., Marchiori, M.C.L., Maria-Engler, S.S., Wink, M.R., Azevedo, J.G., Nogueira, C.W., Braganhol, E., and Cruz, L. (2020). Xanthan gum-based hydrogel containing nanocapsules for cutaneous diphenyl diselenide delivery in melanoma therapy. Investigational New Drugs 38 (3): 662–674.

      28 28 Hassan, M.A., Amara, A.A., Abuelhamd, A.T., and Haroun, B.M. (2010). Leucocytes show improvement growth on PHA polymer surface. Pakistan Journal of Pharmaceutical Sciences 23 (3): 332–336.

      29 29 Hua, D., Gao, S., Zhang, M., Ma, W., and Huang, C. (2020). A novel xanthan gum-based conductive hydrogel with excellent mechanical, biocompatible, and self-healing performances. Carbohydrate Polymers 247: 116743.

      30 30 Khan, M.U.A., Raza, M.A., Razak, S.I.A., Abdul Kadir, M.R., Haider, A., Shah, S.A., Mohd Yusof, A.H., Haider, S., Shakir, I., and Aftab, S. (2020). Novel functional antimicrobial and biocompatible arabinoxylan/guar gum hydrogel for skin wound dressing applications. Journal of Tissue Engineering and Regenerative Medicine 14 (10): 1488–1501.

      31 31 Stark, M., DeBernardis, D., McDowell, C., Ford, E., and McMillan, S. (2020). Percutaneous skeletal fixation of painful subchondral bone marrow edema utilizing an injectable, synthetic, biocompatible hyaluronic acid-based bone graft substitute. Arthroscopy Techniques 9 (11): e1645–e1650.

      32 32 Araujo, D., Alves, V.D., Lima, S.A.C., Reis, S., Freitas, F., and Reis, M.A.M. (2020). Novel hydrogels based on yeast chitin-glucan complex: characterization and safety assessment. International Journal of Biological Macromolecules 156: 1104–1111.

      33 33 Johnson, W., Jr., Bergfeld, W.F., Belsito, D.V., Hill, R.A., Klaassen, C.D., Liebler, D.C., Marks, J.G., Jr., Shank, R.C., Slaga, T.J., Snyder, P.W., Gill, L.J., and Heldreth, B. (2020). Safety assessment of silk protein ingredients as used in cosmetics. International Journal of Toxicology 39 (3_suppl): 127S–144S.

      34 34 Kasai, D. (2020). Poly(cis-1,4-isoprene)-cleavage enzymes from natural rubber-utilizing bacteria. Bioscience, Biotechnology and Biochemistry 84 (6): 1089–1097.

      35 35 Amara, A. (2008). Polyhydroyalkanoates: from basic research and molecular biology to application. IIUM Engineering Journal 9 (1): 37–73.

      36 36 Chaikaew, P., Adeyemi, O., Hamilton, A.O., and Clifford, O. (2020). Spatial characteristics and economic value of threatened species (Khaya ivorensis). Scientific Reports 10 (1): 6266.

      37 37 Amara, A.A. and Moawad, H. (2011). PhaC synthases and PHA depolymerases: the enzymes that produce and degrade plastic. IIUM Engineering Journal 12 (4): 21–37.

      38 38 Frausto de Silva, J.J.R. and Williams, R.J.P. (1993). The Biological Chemistry of the Elements: The Inorganic Chemistry of Life. Oxford: Clarendon Press.

      39 39 Steinbüchel, A. (2001). Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromolecular Bioscience 1 (1): 1–24.

      40 40 Asayama, S., Nogawa, M., Takei, Y., Akaike, T., and Maruyama, A. (1998). Synthesis of novel polyampholyte comb-type copolymers consisting of a Poly(L-lysine) backbone and hyaluronic acid side chains for a DNA carrier. Bioconjugate Chemistry 9 (4): 476–481.

      41 41 Record, M.T. (1975). Effects of Na+ and Mg++ ions on the helix-coil transition of DNA. Biopolymers 14 (10): 2137–2158.

      42 42 Zheng, J., Zhu, G., Li, Y., Li, C., You, M., Chen, T., Song, E., Yang, R., and Tan, W. (2013). A spherical nucleic acid platform based on self-assembled DNA biopolymer for high-performance cancer therapy. ACS Nano 7 (8): 6545–6554.

      43 43 Rau, I., Grote, J.G., Kajzar, F., and Pawlicka, A. (2012). DNA novel nanomaterial for applications in photonics and in electronics. Comptes Rendus Physique 13 (8): 853–864.

      44 44 Smith, T.J. (1994). Calcium alginate hydrogel as a matrix for enteric delivery of nucleic acids. BioPharm 7 (3): 54–55.

      45 45 Agostinacchio, F., Mu, X., Dire, S., Motta, A., and Kaplan, D.L. (2020). In Situ 3D printing: opportunities with silk inks. Trends in Biotechnology 39 (7): 19–30.

      46 46 Xiao, C.Y., Zhu, Z.L., Zhang, C., Fu, M., Qiao, H.J., Wang, G., and Dang, E.L. (2020). Small interfering RNA targeting of keratin 17 reduces inflammation in imiquimod-induced psoriasis-like dermatitis. Chinese Medical Journal (Engl) 133 (24): 2910–2918.

      47 47 Raychaudhuri, R., Naik, S., Shreya, A.B., Kandpal, N., Pandey, A., Kalthur, G., and Mutalik, S. (2020). Pullulan based stimuli responsive and sub cellular targeted nanoplatforms for biomedical application: synthesis, nanoformulations and toxicological perspective. International Journal of Biological Macromolecules 161: 1189–1205.

      48 48 Jana, P., Ghosh, S., and Sarkar, K. (2020). Low molecular weight polyethyleneimine conjugated guar gum for targeted gene delivery to triple negative breast cancer. International Journal of Biological Macromolecules 161: 1149–1160.

      49 49 Kraskouski, A., Hileuskaya, K., Kulikouskaya, V., Kabanava, V., Agabekov, V., Pinchuk, S., Vasilevich, I., Volotovski, I., Kuznetsova, T., and Lapitskaya, V. (2020). Polyvinyl alcohol and pectin blended films: preparation, characterization and mesenchymal stem cells attachment. Journal of Biomedical Materials Research A 109 (8): 1379–1392.

СКАЧАТЬ