Biomolecules from Natural Sources. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Biomolecules from Natural Sources - Группа авторов страница 21

СКАЧАТЬ lipids in rhodococci. Antonie van Leeuwenhoek 74 (1/3): 59–70.

      63 Lin, S.-C., Lin, K.-G., and Lin, Y.M. (1998). Enhanced biosurfactant production by a Bacillus licheniformis mutant. Enzyme and Microbial Technology 23: 267–273.

      64 Mclaughlin, C.A., Schwartzman, S.M., Horner, B.L. et al. (1980). Regression of tumors in guinea pigs after treatment with synthetic muramyl dipeptides and trehalose dimycolate. Science (80) 208 (4442): 415–416.

      65 Makkar, R.S., Cameotra, S.S., and Banat, I.M. (2011). Advances in utilization of renewable substrates for biosurfactant production. AMB Express 1 (1): 1–19.

      66 Marqués, A.M., Pinazo, M., Farfana, F.J., Aranda, J.A., Teruel, A., Ortiz, A., Manresa, A., and Espunya, M.J. (2009). The physicochemical properties and chemical composition of trehalose lipids produced by Rhodococcus erythropolis 51T7. Chemistry and Physics of Lipids 158: 110–117.

      67 Mata-Sandoval, J.C., Karns, J., and Torrents, A. (1999). High-performance liquid chromatography method for the characterization of rhamnolipid mixtures produced by Pseudomonas aeruginosa UG2 on corn oil. Journal of Chromatography A 864: 211–220.

      68 Matsumoto, Y., Cao, E., and Ueoka, R. (2013). Novel liposomes composed of dimyristoylphosphatidylcholine and trehalose surfactants inhibit the growth of tumor cells along with apoptosis. Biological & Pharmaceutical Bulletin 36 (8): 1258–1262.

      69 Matsumoto, Y., Kuwabara, K., Ichihara, H., and Kuwano, M. (2016). Therapeutic effects of trehalose liposomes against lymphoblastic leukemia leading to apoptosis in vitro and in vivo. Bioorganic & Medicinal Chemistry Letters 15, 26 (2): 301–305.

      70 Mnif, I., Ghribi, D. (2015). Microbial derived surface active compounds: properties and screening concept. World Journal of Microbiology and Biotechnology 31 (7): 1001–1020.

      71 Mnif, I. and Ghribia, D. (2016). Glycolipid biosurfactants: main properties and potential applications in agriculture and food industry. Journal of the Science of Food and Agriculture 96 (13): 4310–4320.

      72 Morikawa, M., Hirata, Y., and Imanaka, T. (2000). A study on the structure-function relationship of lipopeptide biosurfactants. Biochimica et Biophysica Acta 1488: 211–218.

      73 Mujumdar, S., Joshi, P., and Karve, N. (2019). Production, characterization, and applications of bioemulsifiers (BE) and biosurfactants (BS) produced by Acinetobacter spp.: a review. Journal of Basic Microbiology 59 (3): 277–287.

      74 Mukherjee, S., Das, P., and Sen, R. (2006). Towards commercial production of microbial surfactants. Trends in Biotechnology 24 (11): 509–514.

      75 Mulligan, C.N., Cooper, D.G., and Neufeld, R.J. (1984). Selection of microbes producing biosurfactants in media without hydrocarbons. Journal of Fermentation Technology 62: 311–314.

      76 Mutalik, S.R., Vaidya, B.K., Joshi, R.M., Desai, K.M., and Nene, S.N. (2008). Use of response surface optimization for the production of biosurfactant from Rhodococcus spp. MTCC 2574. Bioresource Technology 99: 1875–7880.

      77 Natsuhara, Y., Oka, S., Kaneda, K., and Yano, I. (1990). Parallel antitumor, granuloma forming and tumor-necrosis-factor-priming activities of mycoloyl glycolipids from Nocardia rubra that differ in carbohydrate moiety: structure–activity relationships. Cancer Immunology, Immunotherapy 31: 99–106.

      78 Oliveira, M.R., Magri, A., Baldo, C., Camilios-Neto, D., Minucelli, T., and Celligo, M.A.P.C. (2015). Review: sophorolipids a promising biosurfactant and its applications. International Journal of Advanced Biotechnology and Research 6 (2): 161–174.

      79 Pacheco, G.J., Ciapina, E.M.P., Gomes, E.B., and Pereira-Junior, N. (2010). Biosurfactant production by Rhodococcus erythropolis and its application to oil removal. Brazilian Journal of Microbiology 41 (3): 685–693.

      80 Patil, H.I. and Pratap, A.P. (2018). Production and quantitative analysis of trehalose lipid biosurfactants using high-performance liquid chromatography. Journal of Surfactants and Detergents 21 (4): 553–564.

      81 Paulino, B.N., Pessôa, M.G., Mano, M.C.R., Molina, G., Neri-Numa, I.A., and Pastore, G.M. (2016). Current status in biotechnological production and applications of glycolipid biosurfactants. Applied Microbiology and Biotechnology 100: 10265–10293.

      82 Philp, J.C., Kuyukina, M.S., Ivshina, I.B., Dunbar, S.A., Christofi, N., Lang, S., and Wray, V. (2002). Alkanotropic Rhodococcus ruber as a biosurfactant producer. Applied Microbiology and Biotechnology 59: 318–324.

      83 Pinzon, N. and Ju, L.K. (2009). Improved detection of rhamnolipid production using agar plates containing Methylene blue and cetyltrimethyl ammonium bromide. Biotechnology Letters 31: 1583–1588.

      84 Pinzon, N.M., Zhang, Q., Koganti, S., and Ju, L.K. (2009). Advances in bioprocess development of rhamnolipid and sophorolipid production. In: Biobase Surfactants and Detergents—Synthesis, Properties, and Applications (ed. D.G. Hayes, D. Kitamoto, D.K.Y. Solaiman, and R.D. Ashby), 77–105. Urbana, IL: AOCS Press.

      85 Ramsay, B., McCarthy, J., Guerra-Santos, L., Kappeli, O., Fiechter, A., and Margaritis, A. (1988). Biosurfactant production and diauxic growth of Rhodococcus aurantiacus when using n -alkanes as the carbon source. Canadian Journal of Microbiology 34 (11): 1209–1212.

      86 Ribeiro, I.A., Bronze, M.R., Castro, M.F., and Ribeiro, M.H.L. (2012). Design of selective production of sophorolipids by Rhodotorula bogoriensis through nutritional requirements. Journal of Molecular Recognition 25 (11): 630–640.

      87 Ribeiro, I.A., Bronze, M.R., Castro, M.F., and Ribeiro, M.H.L. (2013). Sophorolipids: improvement of the selective production by Starmerella bombicola through the design of nutritional requirements. Applied Microbiology and Biotechnology 97 (5): 1875–1887.

      88 Rodrigues, L., Banat, I.M., Teixeira, J., and Oliveira, R. (2006). Biosurfactants: potential applications in medicine. Journal of Antimicrobial Chemotherapy 57 (4): 609–618.

      89 Sana, S., Datta, S., Biswas, D., and Sengupta, D. (2018). Assessment of synergistic antibacterial activity of combined biosurfactants revealed by bacterial cell envelop damage. Biochimica et Biophysica Acta - Biomembranes 1860 (2): 579–585.

      90 Santos, D.K.F., Rufino, R.D., Luna, J.M., Santos, V.A., and Sarubbo, L.A. (2016). Biosurfactants: multifunctional biomolecules of the 21st century. International Journal of Molecular Sciences 18, 17 (3): 1–31.

      91 Sarwar, A., Brader, G., Corretto, E., Aleti, G., Corretto, E., Abaidullah, M., Sessitsch, A., and Hafeez, F.Y. (2018). Qualitative analysis of biosurfactants from Bacillus species exhibiting antifungal activity. PLoS One 13 (6): 1–15.

      92 Sato, S., Fukuoka, T., Saika, A., Koshiyama, T., and Morita, T. (2019). A New Screening Approach for Glycolipid-type Biosurfactant Producers Using MALDI-TOF/MS. Journal of Oleo Science 68 (12): 1287–1294.

      93 Satpute, S.K., Banat, I.M., Dhakephalkar, P.K., Banpurkar, A.G., and Chopade, B.A. (2010). Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms. Biotechnology Advances 28 (4): 436–450.

      94 Satpute, S.K., Bhawsar, B.D., Dhakephalkar, P.K., and Chopad, B.A. (2008). Assessment of different screening methods for selecting biosurfactant producing marine bacteria. Indian Journal of Marine Sciences 37 (3): 243–250.

      95 Sen, R. and Swaminathan, T. (2005). Characterization of concentration and purification parameters and operating conditions for the small-scale recovery of surfactin. Process Biochemistry 40: 2953–2958.

      96 Sen, S., Borah, S.N., Bora, A., and Deka, S. (2017). Production, characterization, СКАЧАТЬ