Biomolecules from Natural Sources. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Biomolecules from Natural Sources - Группа авторов страница 19

СКАЧАТЬ varieties, especially beyond the development of novel recombinant microorganism hyperproducers may potentially bring the required development in these biosurfactant production process.

      With ever increasing reports regarding the therapeutic and biomedical properties of glycolipids (e.g. trehalose lipids) as biosurfactants, these molecules will surpass the realm of surfactants and might emerge as highly valued molecules with relevance to health in the near future. The future application of glycolipids (e.g. trehalose lipids) in drugs or medicines will make it really interesting for industry. Therefore, future glycolipid research should be focused on making the production process economical with the potential use of hyperproducers in addition to novel cost-effective bioprocesses.

      In the study of trehalose lipids, future work should be focussed on the use of inexpensive (when adequate) carbon substrates, optimization of C/N and enviromental conditions, leading to the highest yields, combined with cost effective downstream processing methods. A large group of biosurfactant producers belonging to the generas Rhodococus, Gordonia or Torulopsis have not been exploited extensively for the economical production of trealose lipids.

      Additionally there is the possibility of further chemical modifications of trehalose lipids, to obtain novel analogues with diverse and improved properties.

      References

      1 Abdel-Mawgoud, A.M. and Stephanopoulos, G. (2018). Simple glycolipids of microbes: chemistry, biological activity and metabolic engineering. Synthetic and Systems Biotechnology 3 (1): 3–19.

      2 Almeida, D.G., Soares Da Silva, R.C.F., Luna, J.M., Rufino, R.D., Santos, V.A., Banat, I.M., and Sarubbo, L.A. (2016). Biosurfactants: promising molecules for petroleum biotechnology advances. Frontiers in Microbiology 7: 1–14.

      3 Anderson, R.J. and Newman, M.S. (1933). The chemistry of the lipids of tubercle bacilli: XXXIII. Isolation of trehalose from the acetone-soluble fat of the human tubercle bacillus. The Journal of Biological Chemistry 101: 499–504.

      4 Aparna, A., Srinikethan, G., and Hedge, S. (2011). Effect of addition of biosurfactant produced by Pseudomonas ssp. on biodegradation of crude oil. International Proceedings of Chemical, Biological & Environmental Engineering 6: 71.

      5 Ashby, R.D., Solaiman, D.K.Y., and Foglia, T.A. (2008). Property control of sophorolipids: influence of fatty acid substrate and blending. Biotechnology Letters 30 (6): 1093–1100.

      6 Azuma, M., Suzutani, T., Sazaki, K., Yoshida, I., Sakuma, T., and Yoshida, T. (1987). Role of interferon in the augmented resistance of trehalose 6,6’-dimycolate-treated mice to influenza virus infection. The Journal of General Virology 68: 835–843.

      7 Bachmann, R.T., Johnson, A.C., and Edyvean, R.G.J. (2014). Biotechnology in the petroleum industry: an overview. International Biodeterioration and Biodegradation 86: 225–237.

      8 Baeva, T.A., Gein, S.V., Kuyukina, M.S., Ivshina, I.B., Kochina, O.A., and Chereshnev, V.A. (2014). Effect of glycolipid Rhodococcus biosurfactant on secretory activity of neutrophils in vitro. Bulletin of Experimental Biology and Medicine 157 (2): 238–242.

      9 Bajaj, A., Mayliraj, S., Mudiam, M.K.R., Patel, D.K., and Manickam, N. (2014). Isolation and functional analysis of a glycolipid producing Rhodococcus sp. strain IITR03 with potential for degradation of 1, 1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT). Bioresource Technology 167: 398–406.

      10 Banat, I.M., Franzetti, A., Gandolfi, I., Bestetti, G., Martinotti, M.G., Fracchia, L., Smyth, T.J., and Marchant, R. (2010). Microbial biosurfactants production, applications and future potential. Applied Microbiology and Biotechnology 87 (2): 427–444.

      11 Bogaert, I.N.A.V., Saerens, K., Muynck, C., Develter, D.M., Soetaert, W., and Vandamme, E.J. (2007). Microbial production and application of sophorolipids. Applied Microbiology and Biotechnology 76 (1): 23–34.

      12 Borsanyiova, M., Patil, A., Mukherji, R., Prabhune, A., and Bopegamage, S. (2016). Biological activity of sophorolipids and their possible use as antiviral agents. Folia Microbiologica (Praha). 61 (1): 85–89.

      13 Bouassida, M., Ghazala, I., Ellouze-Chaabouni, S., and Ghribi, D. (2018). Improved biosurfactant production by Bacillus subtilis SPB1 mutant obtained by random mutagenesis and its application in enhanced oil recovery in a sand system. Journal of Microbiology and Biotechnology 28 (1): 95–104.

      14 Brandenburg, K. and Seydel, U. (1988). Infrared spectroscopy of glycolipids. Chemistry Physical Lipids 96 (1–2): 23–40.

      15 Bryant, F.O. (1990). Improved method for the isolation of biosurfactant glycolipids from Rhodococcus sp. strain H13A. Applied Environmental Microbiology 56: 1494–1496.

      16 Bungaruang, L., Gutmann, A., and Nidetzky, B. (2013). Leloir glycosyltransferases and natural product glycosylation: biocatalytic synthesis of the C-glucoside nothofagin, a major antioxidant of redbush herbal tea. Advanced Synthesis & Catalysis 355 (14–15): 2757–2763.

      17 Cameotra, S.S. and Makkar, R.S. (1998). Synthesis of biosurfactants in extreme conditions. Applied Microbiology and Biotechnology 50 (5): 520–529.

      18 Cappelletti, M., Presentato, A., Piacenza, E., Firrincieli, A., Turner, R.J., and Zannoni, D. (2020). Biotechnology of Rhodococcus for the production of valuable compounds. Applied Microbiology and Biotechnology 104: 8567–8594.

      19 Carrillo, P.G., Mardaraz, C., Pitta-Alvarez, S.I., and Giuliett, A.M. (1996). Isolation and selection of biosurfactant producing bacteria. World Journal of Microbiology & Biotechnology 12 (1): 82–84.

      20 Christova, N., Lang, S., Wray, V., Kaloyanov, K., Konstantinov, S., and Stoineva, I. (2015). Production, structural elucidation and in vitro antitumor activity of trehalose lipid biosurfactant from Nocardia farcinica strain. Journal of Microbiology and Biotechnology 25: 439–447.

      21 Ciapina, E.M.P., Melo, W.C., Santa Anna, L.M.M., Santos, A.S., Freire, D.M.G., and Pereira, N. (2006). Biosurfactant production by Rhodococcus erythropolis grown on glycerol as sole carbon source. Applied Biochemistry and Biotechnology 131 (1–3): 880–886.

      22 Cooper, D.G. and Goldenberg, B.G. (1987). Surface-active agents from two bacilllus species. Applied and Environmental Microbiology 53: 224–229.

      23 Cortés-Sánchez, A.J., Hernández-Sánchez, H., and Jaramillo-Flores, M.E. (2013). Biological activity of glycolipids produced by microorganisms: new trends and possible therapeutic alternatives. Microbiological Research 168 (1): 22–32.

      24 Crouzet, J., Arguelles-Arias, A., Dhondt-Cordelier, S., Cordelier, S., Pršić, J., Hoff, G., Mazeyrat-Gourbeyre, F., Baillieul, F., Clément, C., Ongena, M., and Dorey, S. (2020). Biosurfactants in plant protection against diseases: rhamnolipids and lipopeptides case study. Frontiers in Bioengineering and Biotechnology 8: 1–11.

      25 Davis, D.A. et al. (2001). The application of foaming for recovery of surfactin from B. subtilis ATCC 21332. Enzyme Microbiology Technology 28: 346–354.

      26 DeBosch, B.J., Heitmeier, M.R., Mayer, A.L., Higgins, C.B., Crowley, J.R., Kraft, T.E., Chi, M., Newberry, E.P., Chen, Z., Finck, B.N., Davidson, N.O., Yarasheski, K.E., Hruz, P.W., and Moley, K.H. (2016). Trehalose inhibits solute carrier 2A (Slc2A) proteins to induce autophagy and prevent hepatic steatosis. Science Signaling 9 (416): 1.

      27 Desai, J.D. and Banat, I.M. (1997). Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews : MMBR 61 (1): 47–64.

      28 Dogan, I., Pagilla, K.R., Webster, D.A., and СКАЧАТЬ