Magnetic Resonance Microscopy. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Magnetic Resonance Microscopy - Группа авторов страница 25

Название: Magnetic Resonance Microscopy

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Химия

Серия:

isbn: 9783527827251

isbn:

СКАЧАТЬ of the eigenmodes used is the spatial coincidence of the maximum magnetic field with low electric field levels as well as the purely magnetically induced (nonconservative) nature of the electric field in the sample. Positioning the sample in this specific region therefore limits the losses due to the electric field interaction with the conductive biological materials, while keeping B1 values sufficiently high to perform imaging. The recent development of low-loss, high-permittivity ceramic materials has had a significant impact on the performance of dielectric probes, limiting the intrinsic losses.

      Most probes proposed for MRM exploit the first TE mode of cylindrical high-permittivity resonators. Future work on developing probes exploiting the first hybrid mode would be beneficial to widen the possibilities of using ceramic probes. Another point of interest would be to develop arrays of ceramic probes to significantly reduce the acquisition time, which is a critical experimental parameter when performing MRI.

      References

      1 1 Kajfez, D.and Guillon, P. (1998). Dielectric Resonators, 2e. Atlanta, GA: Noble Publishing Corporation.

      2 2 Leung, K.W., Lim, E.H., and Fang, X.S. (2012). Dielectric resonator antennas: From the basic to the aesthetic. Proceedings of the IEEE 100 (7): 2181–2193.

      3 3 Long, S.A., McAllister, M.W., and Shen, L.C. (1983). The resonant cylindrical dielectric cavity antenna. IEEE Transactions on Antennas and Propagation 31 (3): 406–412.

      4 4 Fiedziuszko, S.J. (1982). Dual-mode dielectric resonator loaded cavity filters. IEEE Transactions on Microwave Theory and Techniques 30 (9): 1311–1316.

      5 5 Liang, X.P.and Zaki, K.A. (1993). Modeling of cylindrical dielectric resonators in rectangular waveguides and cavities. IEEE Transactions on Microwave Theory and Techniques 41 (12): 2174–2181.

      6 6 Chen, S.W. (1991). Dielectric ring resonators loaded waveguide and on substrate. IEEE Transactions on Microwave Theory and Techniques 39 (12): 2069–2076.

      7 7 Webb, A.G. (2011). Dielectric materials in magnetic resonance. Concepts in Magnetic Resonance Part A 38 (4): 148–184.

      8 8 Golovina, I., Geifman, I., and Belous, A. (2008). New ceramic EPR resonators with high dielectric permittivity. Journal of Magnetic Resonance 195 (1): 52–59.

      9 9 Mett, R.R., Sidabras, J.W., Golovina, I.et al. (2008). Dielectric microwave resonators in TE011 cavities for electron paramagnetic resonance spectroscopy. Review of Scientific Instruments 79 (9): 1–8.

      10 10 Mett, R.R., Sidabras, J.W., Anderson, J.R.et al. (2019). Rutile dielectric loop-gap resonator for X-band EPR spectroscopy of small aqueous samples. Journal of Magnetic Resonance 307: 106585.

      11 11 Nenasheva, E.A., Kanareykin, A.D., Kartenko, N.F.et al. (2004). Ceramics materials based on (Ba, Sr)TiO 3 solid solutions for tunable microwave devices. Journal of Electroceramics 13 (1–3): 235–238.

      12 12 Nenasheva, E.A., Kartenko, N.F., Gaidamaka, I.M.et al. (2010). Low loss microwave ferroelectric ceramics for high power tunable devices. Journal of the European Ceramic Society 30 (2): 395–400.

      13 13 Shchelokova, A., Ivanov, V., Mikhailovskaya, A.et al. (2020). Ceramic resonators for targeted clinical magnetic resonance imaging of the breast. Nature Communications 11 (1): 1–7.

      14 14 Webb, A.G. (2012). Visualization and characterization of pure and coupled modes in water-based dielectric resonators on a human 7T scanner. Journal of Magnetic Resonance 216: 107–113.

      15 15 Aussenhofer, S.A.and Webb, A.G. (2014). An eight-channel transmit/receive array of TE01 mode high permittivity ceramic resonators for human imaging at 7 T. Journal of Magnetic Resonance 243: 122–129.

      16 16 Haines, K., Neuberger, T., Lanagan, M.et al. (2009). High Q calcium titanate cylindrical dielectric resonators for magnetic resonance microimaging. Journal of Magnetic Resonance 200 (2): 349–353.

      17 17 Zhang, K.and Li, D. (2008). Electromagnetic Theory for Microwaves and Optoelectronics, 2e. New York: Springer.

      18 18 Pozar, D.M. (2012). Microwave Engineering, 4e. New York: John Wiley and Sons, Inc.

      19 19 Petit, R. (1993). Ondes électromagnétiques en radioélectricité et en optique. Paris: Masson.

      20 20 Orfanidis, S.J. (2003). Electromagnetic waves and antennas. https://www.ece.rutgers.edu/~orfanidi/ewa (accessed 14 October 2021).

      21 21 Moussu, M.A.C., Abdeddaim, R., Dubois, M.et al. (2020). A semi-analytical model of high permittivity dielectric ring resonators for magnetic resonance imaging. IEEE Transactions on Antennas and Propagation 68 (8): 6317–6329.

      22 22 Abramowitz, M.and Stegun, I.A. (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Washington, DC: US Government Printing Office.

      23 23 Bowman, F. (2012). Introduction to Bessel Functions. New York: Dover Publications Inc.

      24 24 Minard, K.R.and Wind, R.A. (2001). Solenoidal microcoil design – Part II: Optimizing winding parameters for maximum signal-to-noise performance. Concepts in Magnetic Resonance 13 (3): 190–210.

      25 25 Kishk, A.A., Glisson, A., and Junker, G.P. (2001). Bandwidth enhancement for split cylindrical dielectric resonator antennas. Progress in Electromagnetics Research 33: 97–118.

      26 26 Rotaru, M.and Sykulski, J.K.Numerical investigation on compact multimode dielectric resonator antennas of very high permittivity. IET Conference Publications. 2008; 537.189–190.

      27 27 Itoh, T.and Rudokas, R.S. (1977). New method for computing the resonant frequencies of dielectric resonators. IEEE Transactions on Microwave Theory and Techniques 25 (1): 52–54.

      28 28 Harrington, R.F. (1961). Time Harmonic Electromagnetic Fields. New York: McGraw-Hill.

СКАЧАТЬ