Magnetic Resonance Microscopy. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Magnetic Resonance Microscopy - Группа авторов страница 22

Название: Magnetic Resonance Microscopy

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Химия

Серия:

isbn: 9783527827251

isbn:

СКАЧАТЬ P subscript text loss end text end subscript superscript text ring end text end superscript plus P subscript text loss end text end subscript superscript text sample end text end superscript end root end fraction."/>

      The above equation can be simplified to:

       text SNR end text subscript text ceramic end text end subscript superscript text TE end text subscript 01 text δd end text end subscript end superscript ∝? fraction numerator τ tau over denominator square root of P subscript text loss end text comma text norm end text end subscript superscript text ring end text end superscript plus τ tau squared P subscript text loss end text comma text norm end text end subscript superscript text sample end text end superscript end root end fraction. (2.10)

      2.3.4 Mode Frequency

      To be used as a coil for MR imaging, the exploited mode of the resonator must be adjusted to the working frequency. In this framework estimating the mode frequency with a simple method is very useful for predesigning the ceramic probe. Methods with low computational costs provide an approximated value of the TE01δ mode frequency for disk resonators. For example, a commonly used expression, derived from simulation data, is the following:

      fraction numerator f subscript text probe end text end subscript minus f subscript text disk end text end subscript over denominator f subscript text disk end text end subscript end fraction almost equal to fraction numerator negative begin display style triple integral subscript V subscript text samp end text end subscript end subscript left parenthesis ? subscript straight s minus ? subscript straight d right parenthesis vertical line E subscript text disk end text end subscript vertical line squared d v end style text end text over denominator begin display style integral integral integral subscript V subscript text samp end text end subscript union to the power of text ? end text end exponent text end text V subscript text ring end text end subscript end subscript left parenthesis ? subscript straight d vertical line E subscript text disk end text end subscript vertical line squared plus mu subscript 0 vertical line H subscript text disk end text end subscript vertical line squared right parenthesis d v text end text end style end fraction. (2.12)

      Figure 2.4 Quantification of the TE01δ mode frequency shift between the disk resonator and the dielectric probe (for both, the numerical simulations results were obtained with the CST Eigenmode Solver). The probe ring has its relative permittivity equal to 200, 500, and 800. The frequency variation is plotted as a function of the sample permittivity and for several discrete values of the radii ratio. Curves in dashed lines correspond to systematic frequency shift inferior to 5%. From [21].

      2.3.4 Application: Design Guidelines

      Figure 2.5 Schematics of the sample, typically contained in a water tube.

      1 Define the required field of view: diameter Dsamp and length Lsamp. These two parameters define the inner radius of the dielectric ring rh, and its height L, respectively. The outer radius rd is kept as degree of freedom for tuning the mode at the Larmor frequency, and the material properties (permittivity ϵr and loss tangent tan δ) are used to optimize the achievable SNR.

      2 For a given list of permittivity values estimate the required outer radii list for tuning at the Larmor frequency (Ne elements in each list).

      1 For a given list of loss tangent values (Nt values), estimate for each element of (and the associated outer radius for tuning) the corresponding SNR value (Ne × Nt values).

      Figure 2.6 Example of tuning the first TE01δ mode frequency of a disk resonator with a given height through its outer radius for varying values of the permittivity.

       On the left: as a function of the ceramic relative permittivity (vertical axis) and its loss tangent (horizontal axis) for given sample properties (ϵr,samp=50, σsamp = 1 S/m).

       On СКАЧАТЬ