RF/Microwave Engineering and Applications in Energy Systems. Abdullah Eroglu
Чтение книги онлайн.

Читать онлайн книгу RF/Microwave Engineering and Applications in Energy Systems - Abdullah Eroglu страница 19

СКАЧАТЬ target="_blank" rel="nofollow" href="#fb3_img_img_ebc37ebc-d6ff-57af-a75d-035a2ce899de.png" alt="Associative right-arrow ModifyingAbove upper A With right-arrow dot ModifyingAbove upper B With right-arrow ModifyingAbove upper C With right-arrow dot ModifyingAbove upper D With right-arrow equals left-parenthesis ModifyingAbove upper A With right-arrow dot ModifyingAbove upper B With right-arrow right-parenthesis left-parenthesis ModifyingAbove upper C With right-arrow dot ModifyingAbove upper D With right-arrow right-parenthesis"/>

      (1.16b)Associative right-arrow ModifyingAbove upper A With right-arrow dot ModifyingAbove upper B With right-arrow ModifyingAbove upper C With right-arrow equals left-parenthesis ModifyingAbove upper A With right-arrow dot ModifyingAbove upper B With right-arrow right-parenthesis ModifyingAbove upper C With right-arrow

      (1.16c)Associative right-arrow ModifyingAbove upper A With right-arrow times ModifyingAbove upper B With right-arrow dot ModifyingAbove upper C With right-arrow equals left-parenthesis ModifyingAbove upper A With right-arrow times ModifyingAbove upper B With right-arrow right-parenthesis dot ModifyingAbove upper C With right-arrow

      (1.16d)Associative right-arrow ModifyingAbove upper A With right-arrow times left-parenthesis ModifyingAbove upper B With right-arrow times ModifyingAbove upper C With right-arrow right-parenthesis not-equals left-parenthesis ModifyingAbove upper A With right-arrow times ModifyingAbove upper B With right-arrow right-parenthesis times ModifyingAbove upper C With right-arrow

      1.2.2 Coordinate Systems

      Three coordinate systems are defined in this section: the rectangular or Cartesian coordinate system, the cylindrical coordinate system, and the spherical coordinate system.

      1.2.2.1 Cartesian Coordinate System

      The magnitude of vector ModifyingAbove upper A With right-arrow is found from

      (1.18)StartAbsoluteValue ModifyingAbove upper A With right-arrow EndAbsoluteValue equals RootIndex StartRoot ModifyingAbove upper A With right-arrow dot ModifyingAbove upper A With right-arrow EndRoot equals RootIndex StartRoot upper A Subscript x Superscript 2 Baseline plus upper A Subscript y Superscript 2 Baseline plus upper A Subscript z Superscript 2 Baseline EndRoot

      (1.19)StartLayout 1st Row ModifyingAbove x With ampersand c period circ semicolon dot ModifyingAbove x With ampersand c period circ semicolon equals ModifyingAbove y With ampersand c period circ semicolon dot ModifyingAbove y With ampersand c period circ semicolon equals ModifyingAbove z With ampersand c period circ semicolon dot ModifyingAbove z With ampersand c period circ semicolon equals 1 2nd Row ModifyingAbove x With ampersand c period circ semicolon dot ModifyingAbove y With ampersand c period circ semicolon equals ModifyingAbove y With ampersand c period circ semicolon dot ModifyingAbove z With ampersand c period circ semicolon equals ModifyingAbove z With ampersand c period circ semicolon dot ModifyingAbove x With ampersand c period circ semicolon equals 0 EndLayout

      (1.20)StartLayout 1st Row ModifyingAbove x With ampersand c period circ semicolon times ModifyingAbove y With ampersand c period circ semicolon equals ModifyingAbove z With ampersand c period circ semicolon 2nd Row ModifyingAbove y With ampersand c period circ semicolon times ModifyingAbove z With ampersand c period circ semicolon equals ModifyingAbove x With ampersand c period circ semicolon 3rd Row ModifyingAbove z With ampersand c period circ semicolon times ModifyingAbove x With ampersand c period circ semicolon equals ModifyingAbove y With ampersand c period circ semicolon EndLayout

in a Cartesian coordinate system.

Schematic illustration of vector A implies in a cylindrical coordinate system.
in a cylindrical coordinate system.

      The vector operations for dot and cross products for vectors ModifyingAbove upper A With right-arrow and ModifyingAbove upper B With right-arrow are given by

      (1.21)ModifyingAbove upper A With right-arrow dot ModifyingAbove upper B With right-arrow equals upper A Subscript x Baseline upper B Subscript x Baseline plus upper A Subscript y Baseline upper B Subscript y Baseline plus upper A Subscript z Baseline upper B Subscript z

      (1.22)ModifyingAbove upper A With right-arrow times ModifyingAbove upper B With right-arrow equals Start 3 By 3 Determinant 1st Row 1st Column ModifyingAbove x With ampersand c period circ semicolon 2nd Column ModifyingAbove y With ampersand c period circ semicolon 3rd Column ModifyingAbove z With ampersand c period circ semicolon 2nd Row 1st Column upper A Subscript x Baseline 2nd Column upper A Subscript y Baseline 3rd Column upper A Subscript z Baseline 3rd Row 1st Column upper B Subscript x Baseline 2nd Column upper B Subscript y Baseline 3rd Column upper B Subscript z EndDeterminant

      1.2.2.2 Cylindrical Coordinate System