The Wiley-Blackwell Handbook of Childhood Social Development. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу The Wiley-Blackwell Handbook of Childhood Social Development - Группа авторов страница 47

СКАЧАТЬ and various growth plots presented in Figure 3.3, what are the limits of what can be visualized? This is critical in understanding how neuroimaging studies contribute to social brain development, because despite how impressive an image of the brain may be, brain images only portray macroscopic development. What is represented in one cubic millimeter of an MR or CT image, has been described by Insel and Landis (2013, p. 565) as follows: “Imaging with the highest spatial resolution, currently a voxel of about 1‐cubic mm isotropic, has been estimated to contain 80,000 neurons and 4.5 million synapses.” Since there are 2–3, and in some regions, 10 times the number of glial cells per neuron, the total number of neural cells (neurons + glial cells) can be in the hundreds of thousands just within a single cubic millimeter of a scan image. Micheva et al. (2020, p. 253) provide additional insight as to this micro environment: “Brains can be viewed as vast ensembles of highly diverse and dynamic synapses that shape and store information as it travels through the networks of neurons that generate and interconnect those synapses. There are more than 100 trillion synapses per human neocortex, and each synapse is itself a highly complex entity, comprising thousands of diverse and cooperative signal‐transduction proteins.” In a rodent histological study, Motta et al. (2019) demonstrated that within a 10 cubic micron sample of mouse cortical tissue, 34,221 axons could be histologically identified and counted. Accordingly, as the reader reviews neuroimaging statements in this chapter, only inferences about the cellular level of function can be made. As such, even a subtle neuroimaging finding may have major implications depending on the ROI.

Schematic illustration of white matter maturation from birth through 36 months of age.

      (Reproduced with permission from Pujol et al., 2006). Reproduced with permission from Wolters Kluwer.

      Implied in the identification of candidate brain regions that contribute to social behavior, as shown in Figures 3.5 and 3.6 and Table 3.1 is that these brain regions were intimately interconnected, emphasizing the importance of myelination and WM integrity. Optimal functioning and integration of these regions likely underlies prosocial, normative development. But how do these regions and networks come on‐line and how can that be demonstrated and investigated in the developing child in relation to social behavior? Diffusion tensor MRI was introduced in Figure 3.2 which included an illustration of network development in the maturing brain. In the last decade, dramatic improvements in how to study and identify brain networks has been established, especially in terms of the mathematical features of “graph theory” applied to social neuroscience (Bassett & Bullmore, 2017).

Schematic illustration of candidate “social brain” regions.

      (Reproduced with permission from Yeates et al., 2007). Reproduced with permission from the American Psychological Association.

Schematic illustration of critical regions and reciprocal relations of the social brain.

      (Reproduced with permission from Adolphs, 2003). Reproduced with permission from Nature Publishing.