Название: Muography
Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Жанр: Физика
isbn: 9781119723066
isbn:
1 Achard, P., Adriani, O., Aguilar‐Benitez, M., Van den Akker, M., & Alcaraz, J. (2004). Studies of hadronic event structure in e+ e‐ annihilation from 30 to 209 GeV with the L3 detector. Physics Reports, 399(2), 71–174. https://doi.org/10.1016/j.physrep.2004.07.002
2 Adair, R. K., & Kash, H. (1977). Cosmic‐ray muons. In: V. W. Hughes, & C. S. Wu (Eds.), Muon Physics Volume 1: Electromagnetic Interactions. Elsevier. https://doi.org/10.1016/B978‐0‐12‐360601‐3.X5001‐4
3 Aiuppa, A., Federico, C., Giudice, G., Giuffrida, G., Guida, R., Gurrieri, S., et al. (2009). The 2007 eruption of Stromboli volcano: insights from real time measurements of the volcanic gas plume CO2/SO2 ratio. Journal of Volcanology and Geothermic Research 182, 221–230. https://doi.org/10.1016/j.jvolgeores.2008.09.013
4 Allkofer, O. C., Bella, G., Dau, W. D., Jokisch, H., Klemke, G., Oren Y., & Uhr, R. (1985). Cosmic ray muon spectra at sea‐level up to 10 TeV. Nuclear Physics B, 259(1), 1–18. https://doi.org/10.1016/0550‐3213(85)90294‐9
5 Allkofer, O. C., Clausen, K., & Dau, W. D. (1975). The low‐momentum muon spectrum near the equator. Lettere al Nuovo Cimento, 12, 107–110. https://doi.org/10.1007/BF02790470
6 Alvarez, L. W., Anderson, J. A., El Bedwei, F., Burkhard, J., Fakhry, A., Girgis, A., et al. (1970). Search for hidden chambers in the pyramid. Science, 167, 832–839. https://doi.org/10.1126/science.167.3919.832
7 Augusto, C. R. A., Kopenkin, V., Navia, C. E., Tsui, K. H., Shigueoka, H., Fauth, A. C., et al. (2012). Variations of the muon flux at sea level associated with interplanetary ICMEs and corotating interaction regions. The Astrophysical Journal, 759, 2, 143. https://doi.org/10.1088/0004‐637X/759/2/143
8 Azuma, K., Tanaka, H. K. M., Suenaga, H., & Suzuki K. (2014). Muographic test measurements for monitoring groundwater. In ISRM International Symposium – 8th Asian Rock Mechanics Symposium, 14–16 October, Sapporo, Japan.
9 Boezio, M., Carlson, P., Francke, T., Weber, N., Suffert, M., Hof, M., et al. (2000). Measurement of the flux of atmospheric muons with the CAPRICE94 apparatus. Physical Review D, 62, 032007. https://doi.org/doi.org/10.1103/PhysRevD.62.032007
10 Borexino Collaboration (2019). Modulations of the cosmic muon signal in ten years of Borexino data. Journal of Cosmology and Astroparticle Physics, 2019, 046. https://doi.org/10.1088/1475‐7516/2019/02/046
11 Bugaev, E. V., Misaki, A., Naumov, V. A., Sinegovskaya, T. S., Sinegovsky, S. I., & Takahashi, N. (1998). Physical Review D, 58, 054001. https://doi.org/10.1103/PhysRevD.58.054001
12 Bull, R., Nash, W. F., & Rustin, B. C. (1965). The momentum spectrum and charge ratio of mesons at sea‐level. Il Nuovo Cimento, 2, 365–384. https://doi.org/10.1007/BF02721030
13 Burton, M. R., Mader, H. M., & Polacci, M. (2007). The role of gas percolation in quiescent degassing of persistently active basaltic volcanoes. Earth and Planetary Science Letters, 264, 46–60. https://doi.org/10.1016/j.epsl.2007.08.028
14 Conversi, M. (1950). Experiments on cosmic‐ray mesons and protons at several altitudes and L‐latitudes. Physical Review Journals Archive, 79, 749. https://doi.org/10.1103/PhysRev.79.749
15 Delgado‐Granados H, Cárdenas González L, & Piedad Sánchez N. (2001). Sulfur dioxide emissions from Popocatépetl volcano (México): case study of a high‐emission rate, passively degassing erupting volcano. Journal of Volcanological and Geothermic Research, 108, 107–120. https://doi.org/10.1016/S0377‐0273(00) 00280‐8
16 Daya Bay Collaboration (2018). Seasonal variation of the underground cosmic muon flux observed at Daya Bay. Journal of Cosmology and Astroparticle Physics, 2018, 001. https://doi.org/10.1088/1475‐7516/2018/01/001
17 de Mendonca, R. R. S., Braga, C. R., Echer, E., Dal Lago, A., Rockenbach, M., Such, N. J., & Munakata, K. (2016). Deriving the solar activity cycle modulation on cosmic ray intensity observed by Nagoya muon detector from October 1970 until December 2012. Proceedings of the International Astronomical Union, 12, S328, 130–133. https://doi.org/10.1017/S1743921317003763
18 Edmonds, M., Oppenheimer, C., Pyle, D. M., Herd, R. A., & Thompson, G. (2003). SO2 emissions from Soufrière Hills Volcano and their relationship to conduit permeability, hydrothermal interaction and degassing regime. Journal of Volcanological and Geothermic Research, 124, 23–43. https://doi.org/10.1016/ S0377‐0273(03)00041‐6
19 Engel, R., Gaisser, T. K., & Stanev, T. (2001). The flux of atmospheric muons. Proceedings of ICRC 2001, 1029–1032.
20 Gaisser T., & Stanev, T. (2008). Particle astrophysics and high‐energy cosmic rays. Physics Letters B, 667, 254–260.
21 George, E. P. (1955). Cosmic rays measure overburden of tunnel. Commonwealth Engineer, 1955, 455–457.
22 Groom, D. E., Mokhov, N. V., & Striganov, S. I. (2001). Muon stopping‐power and range tables: 10 MeV–100 TeV. Atomic Data and Nuclear Data Tables, 78, 183–356. https://doi.org/10.1006/adnd.2001.0861
23 Haino, S., Sanuki, T., Abe, K., Anraku, K., Asaoka, Y., Fuke, H., et al. (2004). Measurements of primary and atmospheric cosmic‐ray spectra with the BESS‐TeV spectrometer. Physics Letters B, 594(1–2), 35–46. https://doi.org/10.1016/j.physletb.2004.05.019
24 Hansen, P., Gaisser, T. K., Stanev, T., & Sciutto, S. J. (2005). Influence of the geomagnetic field and of the uncertainties in the primary spectrum on the development of the muon flux in the atmosphere. Physical Review D, 71, 083012. https://doi.org/10.1103/PhysRevD.71.083012
25 Hedenquist, J. W., Aoki, M., & Shinohara H. (1994). Flux of volatiles and ore‐forming metals from the magmatic‐hydrothermal system of Satsuma Iwojima volcano. Geology, 22(7), 585–588. https://doi.org/10.1130/0091‐7613(1994)022<0585:FOVAOF>2.3.CO;2
26 Jokisch, H., Carstensen, K., Dau, W., Meyer, H., & Allkofer, O. (1979). Cosmic‐ray muon spectrum up to 1 TeV at 75° zenith angle. Physical Review D, 19(5), 1368–1372. https://doi.org/10.1103/PhysRevD.19.1368
СКАЧАТЬ