Muography. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Muography - Группа авторов страница 46

Название: Muography

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119723066

isbn:

СКАЧАТЬ et al. (2019). Deep learning in medical imaging and radiation therapy. Medical Physics, 46, 1–36. https://doi.org/10.1002/mp.13264

      62 Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of Research and Development, 3, 210–229. https://doi.org/10.1147/rd.33.0210

      63 Scarpetta, S., Giudicepietro, F., Ezin, E. C., Petrosino, S., Del Pezzo, E., Martini, M., & Marinaro, M. (2005). Automatic classification of seismic signals at Mt. Vesuvius Volcano, Italy, using neural networks. Bulletin of the Seismological Society of America, 95, 185–196. https://doi.org/10.1785/0120030075

      64 Schouten, D., & Lendru, P. (2018). Muon tomography applied to a dense uranium deposit at the McArthur River Mine. Journal of Geophysical Research: Solid Earth, 123, 8637–8652. https://doi.org/10.1029/2018JB015626

      65 Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems, 25, 2951–2959.

      66 Sparks, R. (2003). Forecasting volcanic eruptions. Earth and Planetary Science Letters, 210, 1–15. https://doi.org/10.1016/S0012‐821X(03)00124‐9

      67 Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15, 1929–1958.

      68 Tanaka, H. K. M. (2015). Muographic mapping of the subsurface density structures in Miura, Boso and Izu peninsulas, Japan. Scientific Reports, 5, 8305. https://doi.org/10.1038/srep08305

      69 Tanaka, H. K. M., Kusagaya, T., & Shinohara, H. (2014). Radiographic visualization of magma dynamics in an erupting volcano. Nature Communications, 5, 3381. https://doi.org/10.1038/ncomms4381

      70 Tanaka, H. K. M., Nakano, T., Takahashi, S., Yoshida, J., Takeo, M., Oikawa, J., et al. (2007). High resolution imaging in the inhomogeneous crust with cosmic‐ray muon radiography: The density structure below the volcanic crater floor of Mt. Asama, Japan. Earth and Planetary Science Letters, 263, 104–113. https://doi.org/10.1016/j.epsl.2007.09.001

      71 Tanaka, H. K. M., Taira, H., Uchida, T., Tanaka, M., Takeo, M., Ohminato, T., et al. (2010). Three‐dimensional computational axial tomography scan of a volcano with cosmic ray muon radiography. Journal of Geophysical Research, 115, B12332. https://doi.org/10.1029/2010JB007677

      72 Tensorflow (2020). Retrieved from https://tensorflow.org/

      73 Titov, V. V., Gonzalez, F. I., Bernard, E. N., Eble, M. C., Mofjeld, H. O., Newman, J. C., & Venturato, A. J. (2005). Real‐time tsunami forecasting: Challenges and solutions. Natural Hazards, 35, 35–41. https://doi.org/10.1007/s11069‐004‐2403‐3

      74 Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer‐Verlag, New York.

      75 VanderPlas, J., A., Connolly, J., Ivezić, Z., & Gray, A. (2012). Introduction to astroML: Machine learning for astrophysics. Conference on Intelligent Data Understanding, 2012, 47–54.

      76 Varga, D., Gál, Z., Hamar, G., Molnár, J. S., Oláh, É., & Pázmándi, P. (2015). Cosmic muon detector using proportional chambers. European Journal of Physics, 36, 065006. https://doi.org/10.1088/0143‐0807/36/6/065006

      77 Varga, D., Hamar, G., & Oláh, L. (2021). Development of multi‐wire proportional chamber‐based trackers for muography. In: L. Oláh, H. K. M. Tanaka, D. Varga (Eds.), Muography: Exploring Earth’s Subsurface With Elementary Particles, Geophysical Monograph Series 270, Washington, DC: American Geophysical Union. (this volume)

      78 Varga, D., Nyitrai, G., Hamar, G., Galgóczi, G., Oláh, L., Tanaka, H. K. M., & Ohminato, T. (2020). Detector developments for high performance muography applications. Nuclear Instruments and Methods in Physics Research Section A, 958, 162236. https://doi.org/10.1016/j.nima.2019.05.077

      79 Varga, D., Nyitrai, G., Hamar, G., & Oláh, L. (2016). High efficiency gaseous tracking detector for cosmic muon radiography. Advances in High Energy Physics, 2016, 1962317. https://doi.org/10.1155/2016/1962317

      80 Witsil, A. J. C. & Johnson, J. B. (2020). Volcano video data characterized and classified using computer vision and machine learning algorithms. Geoscience Frontiers, 11, 1789–1803. https://doi.org/10.1016/j.gsf.2020.01.016

      81 Yamaoka, K., Geshi, N., Hashimoto, T., Ingrebitsen, S. E., & Oikawa, T. (2016). Special issue “The phreatic eruption of Mt. Ontake volcano in 2014”. Earth, Planets and Space, 68, 175. https://doi.org/10.1186/s40623‐016‐0548‐4

      82 Youden, W. J. (1950). Index for rating diagnostics tests. Cancer, 3, 32–35. https://doi.org/10.1002/1097‐0142(1950)3:1<32::aid‐cncr2820030106>3.0.co;2‐3

Part II Muography for Volcanic Investigations

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/7Rk6UGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAAccAgAAAgAA ADhCSU0EJQAAAAAAEOjxXPMvwRihontnrcVk1bo4QklNBDoAAAAAAPcAAAAQAAAAAQAAAAAAC3By aW50T3V0cHV0AAAABQAAAABQc3RTYm9vbAEAAAAASW50ZWVudW0AAAAASW50ZQAAAABDbHJtAAAA D3ByaW50U2l4dGVlbkJpdGJvb2wAAAAAC3ByaW50ZXJOYW1lVEVYVAAAAAoAQQBkAG8AYgBlACAA UABEAEYAAAAAAA9wcmludFByb29mU2V0dXBPYmpjAAAADABQAHIAbwBvAGYAIABTAGUAdAB1AHAA AAAAAApwcm9vZlNldHVwAAAAAQAAAABCbHRuZW51bQAAAAxidWlsdGluUHJvb2YAAAAJcHJvb2ZD TVlLADhCSU0EOwAAAAACLQAAABAAAAABAAAAAAAScHJpbnRPdXRwdXRPcHRpb25zAAAAFwAAAABD cHRuYm9vbAAAAAAAQ2xicmJvb2wAAAAAAFJnc01ib29sAAAAAABDcm5DYm9vbAAAAAAAQ250Q2Jv b2wAAAAAAExibHNib29sAAAAAABOZ3R2Ym9vbAAAAAAARW1sRGJv СКАЧАТЬ