Название: Методика преподавания математики в начальной школе
Автор: Teacher.elementary.school
Издательство: Автор
Жанр: Прочая образовательная литература
isbn:
isbn:
б) а – «многоугольник», b – «параллелограмм»: объемы данных понятий находятся в отношении включения, но не совпадают – всякий параллелограмм является многоугольником, но не наоборот. Следовательно, понятие «параллелограмм» – видовое по отношению к понятию «многоугольник», а понятие «многоугольник» – родовое по отношению к понятию «параллелограмм».
А
В
в) а – «прямая», b – «отрезок»: объемы понятий не пересекаются, т.к. ни про один отрезок нельзя сказать, что он является прямой, и ни одна прямая не может быть названа отрезком. Следовательно, данные понятия не находятся в отношении рода и вида (отрезок – часть прямой, т.е. наблюдается отношение целого и части).
А В
IV. Определение понятий
1. Понятие определения.
Определение понятий – это логическая операция, с помощью которой раскрывается содержание понятия, либо устанавливается значение термина.
2. Виды определений.
По способу выявления содержания понятия различают явные и неявные определения.
К неявным определениям относят остенсивные. Это определения, раскрывающие существенные свойства (признаки) предметов путем указания, показа, демонстрации объектов, которые этими терминами обозначают.
Например, при ознакомлении с алгебраическими понятиями пользуются остенсивными определениями так:
4 · 7 < 4 · 9 8 · 7 = 56
23 + 8 > 30 9 · 6 = 6 · 9
93 – 8 < 93 – 6 46 + 7 = 62 – 9
Это неравенства. Это равенства.
Наиболее часто применяются остенсивные определения при изучении геометрических понятий.
Остенсивные определения характеризуются незавершенностью. Поэтому впоследствии требуется подробное изучение этих понятий.
Также применяют описание или сравнение объектов.
К неявным определениям относят и контекстуальные – через отрывок текста, через контекст, через анализ конкретной ситуации, описывающей смысл понятия.
Через текст устанавливается связь определяемого понятия с другими, уже известными понятиями, раскрывая его содержание.
Например, при изучении понятия уравнения (2 класс):
– 5 = 4
Из какого числа нужно вычесть 5, чтобы получилось 4?
Обозначим неизвестное число латинской буквой х:
х – 5 = 4 – это уравнение.
Решить уравнение – это значит найти неизвестное число. В данном уравнении неизвестное число равно 9, так как 9 – 5 = 4.
Объясни, почему числа 0, 10, 8 не подходят.
3. Определение через род и видовое отличие.
Среди явных определений в математике чаще всего используются определения через род и видовое отличие.
СКАЧАТЬ